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This work studies the stability and the stochastic properties of neural

activity evoked by external stimulation. The underlying nonlocal model de-

scribes the spatiotemporal response dynamics of neural populations involving

both synaptic delay and axonal transmission delay. We show that the linear

model recasts to a set of affine delay differential equations in spatial Fourier

space. Besides a stability study for general kernels and general external

stimulation, the power spectrum of evoked activity is derived analytically in

the case of external Gaussian noise. Further applications to specific kernels

reveal critical fluctuations at Hopf- and Turing bifurcations and allow the

numerical detection of 1/fα-fluctuations near the stability threshold.
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1. Introduction

Random fluctuations have been reported in spatially-extended systems in
biology, chemistry, and physics [1–3]. These fluctuations originate from thermal
activity or unpredictable chaotic activity [4] and may yield novel effects as stochas-
tic or coherence resonance [5] or noise-induced transitions [6]. In neural systems,
background fluctuations are supposed to originate from spontaneous synaptic ac-
tivity [7], while their spectral properties define the responsiveness of the neu-
rons in the system [8]. In this context, several studies showed the importance of

∗corresponding author; e-mail: Axel.Hutt@physik.hu-berlin.de

(1021)



1022 A. Hutt, T.D. Frank

1/fα-noise on both microscopic [9] and macroscopic level [10]. There are various
effects of fluctuations on neural properties and we mention stochastic resonance
enhancement measured in neocortical pyramidal cells [11] and modelled by in-
duced 1/f - noise [12] and more general distributed noise sources [13]. In addition,
noise may facilitate the detection of subthreshold neural activity [14, 15], which is
known as stochastic resonance. The origins of long memory activity as 1/fα-noise
is not fully understood yet. However, several mechanisms have been found [16, 17],
for example the superposition of relaxation processes [18], noise in diffusion pro-
cesses [19], clustering of signal pulses [20] and nonlinear processes with fractal
characteristics [21]. Further Usher and Stemmler [9] explained 1/f -fluctuations in
neural systems by pattern formation in neural populations subject to uncorrelated
noise.

In addition to the spectral properties of fluctuations, some studies examined
the change of their statistical properties while changing experimental conditions.
For instance, Wallenstein et al. [22] examined electroencephalographic data ob-
tained during a triggered motor coordination experiment, which reveals a phase
transition in finger movements. Examinations of the occurring fluctuations re-
vealed large fluctuation variances near the phase transition threshold both in the
brain signals and the behavioural data. These critical fluctuations are well known
from the theory of phase transitions. Several studies have modelled successfully
this macroscopic phase transition and the corresponding critical fluctuations by
mesoscopic population models [23–26]. Apart from these findings, further previous
studies also indicate large-scale coherent phenomena in neural pathologies, which
originate from mutual neural population activity. Examples are the hand tremor
in Parkinson disease [27], epileptic seizures [28, 29] or hallucinations [30]. The lat-
ter in some cases exhibits a shift of the neural state to an instability by increased
neuronal excitation [31]. Some studies explained visual hallucination patterns
by stability loss in neural populations at bifurcation points [32, 33]. However,
the mentioned neural models only treat a single time scale, namely the synaptic
delay time. In contrast more recent approaches examine the stability of neural
population fields involving constant delayed feedback [34, 29, 35, 36] or axonal
transmission delay [37–41]. To our best knowledge, most of the latter stability
studies neglect random fluctuations. However, these mesoscopic fluctuations may
yield 1/fα-activity or explain macroscopic critical fluctuations as mentioned above
and thus are necessary for realistic descriptions of neural systems.

Several previous studies examined the linear response of neural fields sub-
ject to external stimulation [26, 42, 44, 45]. However, some studies made special
assumptions on the spatial connectivity kernels. For instance, several previous
studies [42–44, 46] model the neural activity by damped nonlinear wave equa-
tions, i.e. partial differential equations, subject to external input. Since damped
wave equations may be derived from integral–differential equations in the case of
exponential kernels (cf. [23, 41]), those models implicate a special spatial connec-
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tivity. That approach is reasonable for long-ranged cortico–cortical interactions,
i.e. local inhibition and lateral excitation, and thus allows the theoretical expla-
nation of macroscopic oscillatory behaviour. However, short-ranged interactions
in specific cortical areas reveal different connectivity scheme, e.g. local excita-
tion and lateral inhibition in visual cortex [47] or nonhomogeneous connectivity in
prefrontal cortex [48]. In order to model neural activity by more general spatial
connectivity schemes, it is necessary to choose a more general model approach.

In this context, several authors have shown the successful application of
integral–differential equations to explain various phenomena in biology and neu-
roscience [32, 33, 37, 49, 50]. The present work follows this integral approach and
studies the linear response of nonlocal neural fields to external input. It extends
previous studies [24, 51, 52] by considering nonlocal interactions and involving
transmission delay. The subsequent section motivates the neural field model and
discusses briefly its properties. Section 3 shows a stability condition and the power
spectrum of the field for general connectivity kernels. In the subsequent section,
we examine specific synaptic kernels and find critical fluctuations near Hopf- and
Turing instabilities. Finally, Section 5 studies the resulting power spectra numeri-
cally for excitatory diffusive fields for both infinite and finite transmission speeds.
We find 1/fα-activity and long-term-memory activity near the stability threshold.
The last section summarizes the obtained results and closes the work.

2. The field model

The present work treats activity in a spatially-extended field of neural
populations [37, 53, 54, 46, 55–58]. In the following, we give a brief motiva-
tion of the discussed model, which has been examined in several previous stud-
ies [38, 39, 41, 57, 59, 60].

The model presumes neural activity, that is coarse-grained in space and time.
The spatial coarse-graining originates from the treatment of macrocolumns, which
represents the entity of neural ensembles [61]. Since these macrocolumns exhibit a
diameter in the range of hundreds of micrometers and the modelled field discusses
interaction on a scale of several centimeters, the model assumes continuity in space.
The coarse-graining in time results from the temporal averaging of spike activity by
slow synapses. This is reasonable, as the time scale of the spike-generating somatic
membrane is much smaller than the synaptic time scale. Hence the mean spike
activity evolves on the time scale of the synapses, i.e. typically ∼ 5−10 ms [42].

Further, the model involves excitatory and inhibitory chemical synapses and
neglects the transmission delay along dendritic structures. The synapses sum
up all lateral contributions from other locations weighted by the synaptic con-
nectivity kernels fe and fi for connections to excitatory and inhibitory synapses,
respectively. These kernels represent probability density distribution of the corre-
sponding synaptic connection and thus are normalized to unity. Here, we assume
that the temporal changes of the synaptic coupling between neurons, e.g. by ha-
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bituation or learning, evolve on a much larger time scale than the neural dynamics
discussed. Furthermore the transmission speeds ve,i along axons are finite and thus
yield the transmission delay ∆e,i = |x− y|/ve,i between two locations x and y. Es-
sentially, chemical synapses respond to incoming spiking activity by temporal delay
and, subsequently, the excitatory and inhibitory post-synaptic potentials Ve,i at
spatial position x and time t obey [38]

Ve,i(x, t) =
∫ t

−∞
dτhe,i(t− τ)

[∫

Γ

dy fe,i(x− y)S[V (y, τ −∆e,i)] + Ee,i(x, τ)
]

. (1)

Here, he,i(t) denote the impulse response functions of excitatory and inhibitory
synapses, respectively, V = V e − Vi is the effective membrane potential and Ee

and Ei represent the external excitatory and inhibitory inputs, respectively. The
transfer function S[V ] originates from the statistical distribution of firing thresh-
olds and exhibits a sigmoidal shape in the case of a unimodal threshold distribu-
tion. Eventually post-synaptic potentials V e−Vi sum up at the soma [62] and the
final model equation for the somatic membrane potentials V reads

V (x, t) = Ît

∫

Γ

dy {Ke(x− y)S[V (y, t−∆e)]−K i(x− y)S[V (y, t−∆i)]}

+ÎtE(x, t) (2)
with he,i(t) = ge,ih(t) and the synaptic gains ge,i. In addition, it is

Ke = gef e, K i = gif i, E = geEe − giEi

and Ît represents the convolution operator acting on the test function f(t) like

Îtf(t) =
∫ t

−∞
dτh(t− τ)f(τ).

Most cortical areas are a part of the neural modular network and receive ex-
ternal connections from other brain areas. Well-known examples are the cortico-
-thalamic subnetwork [63] studied in the context of sleep cycles and the projection
from the lateral geniculate nucleus to the visual cortex. Hence, the neural field
receives external input from cortical and subcortical areas. First we assume exter-
nal excitatory input E0 constant in space and time. Subsequently, the stationary
constant field V (x, t) = V0 obeys

V0 = (ge − gi)S(V0) + E0.

Considering the external input E0 as a control parameter, the corresponding bi-
furcation diagram exhibits either hysteresis with two stable and one unstable state
or shows a single stable state V0 [64].

Now, we consider small deviations u(x, t) = V (x, t) − V0 ¿ V0 about the
stationary solution V0 and assume the additional external stimulus s(x, t) ¿ E0.
Thus Eq. (2) reads
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u(x, t) = Îtγ

∫

Γ

dy [Ke(x− y)u(y, t−∆e)−Ki(x− y)u(y, t−∆i)]

+Ît s(x, t). (3)
Here, γ = δS/δV computed at V = V0 depends implicitly on E0, while δ/δV

denotes the functional derivative. Hence γ represents the control parameter for the
linear case. The external stimulus s(x, t) may correspond to a deterministic driving
force, e.g. originating from sensoric perception. Alternatively, s(x, t) may describe
a fluctuating force acting on the neural field caused by synaptic fluctuations [7].
In fact, in Sect. 4 we will use Eq. (3) to study the stochastic evolution of u(x, t)
under the impact of a fluctuating force.

Since

Ke,i(x− y)u(y, t−∆e,i) =
∫ t

−∞
dτ Ke,i(x− y)δ(t− τ −∆e,i)u(y, τ)

=
∫ t

−∞
dτ ne,i(x− y, t− τ)u(y, τ)

with ne,i(x, t) = Ke,i(x)δ(t − ∆e,i) and the delta-distribution δ(·), the Fourier
transform of Eq. (3) reads

ũ(k, t) =
1√
2π

∫ +∞

−∞
dx u(x, t) exp(−ikx)

= Ît

[
γ
√

2π

∫ ∞

0

dτ ñ(k, τ)ũ(k, t− τ) + s̃(k, t)
]

. (4)

Here, ũ, s̃, and ñ represent the Fourier transforms of u, s, and n = ne − ni, re-
spectively. Hence, in the linear regime the spatio-temporal dynamics of the neural
field decouples into single modes in k-space, while the space-dependent propaga-
tion delay transforms to a distribution of constant delays.

Finally assuming symmetric kernels Ke,i Eq. (4) reads

ũ(k, t) = Ît2γ

∫ ∞

0

dτ [veKe(veτ) cos(kveτ)− viK i(viτ) cos(kviτ)] ũ(k, t− τ)

+Îts̃(k, t). (5)

3. Stability analysis and power spectrum for general kernels

In this section, we set ve = vi = v and use the abbreviation K(x) =
Ke(x) − K i(x). Let us assume the inverse operator Î−1

t = L̂(∂/∂t) exists, such
that

L̂(∂/∂t) h(t) = δ(t), t ≥ 0,

while h(t) is taken from (1). In addition, h(t) is normalized to unity (cf. [42]).
Then Eq. (5) becomes an affine delay differential equation (see e.g. [65]) with dis-
tributed delays
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L̂(∂/∂t)ũ(k, t) = 2vγ

∫ ∞

0

dτ K(vτ) cos(kvτ)ũ(k, t− τ) + s̃(k, t). (6)

Its general solution is

ũ(k, t) = ũh(k, t) +
∫ +∞

−∞
dt′G(k, t− t′)s(k, t′), (7)

where ũh(k, t) represents the homogeneous solution of (6) and G(k, t − t′) repre-
sents the Greens function. Applying standard techniques in linear response theory,
the Greens function is given by

G(k, t) =
1
2π

∫ +∞

−∞
dω

exp(−iωt)
L(−iω)− K̄(k, iω)

, (8)

where L̂ exp(−iωt) = L(−iω) exp(−iωt) and

K̄(k, iω) = 2vγ

∫ ∞

0

dτ K(vτ) cos(kvτ) exp(iωτ). (9)

Extending the real domain of ω to the complex plane and applying the residue
theorem, it is

G(k, t) = Θ(t)

[
i

m∑

l=1

Resl(exp(−iΩlt))

]
= Θ(t)

m∑

l=1

rl(k) exp(λl(k)t) (10)

with the Heaviside function Θ(·). Here, m denotes the number of complex roots
Ωl(k) ∈ C of the denominator in Eq. (8), it is λl(k) = −iΩl(k) and Resl denotes
the residue of the numerator in Eq. (8) at root Ωl(k). The constants rl ∈ C are
fixed by the corresponding residues. We remark that the vanishing denominator
in Eq. (8) corresponds to the characteristic equation known from the theory of
delayed differential equations.

In the case of large transmission speeds, v À ω yields

K̄(k, iω) ≈ γK̄0(k) + i
ω

v
γK̄1(k), (11)

K̄0(k) = 2
∫ ∞

0

K(τ) cos(kτ)dτ, K̄1(k) = 2
∫ ∞

0

τK(τ) cos(kτ)dτ.

Here, the exponential in Eq. (9) has been Taylor-expanded up to the first or-
der. In the case of infinite transmission speed the characteristic equation becomes
L(−iΩ) = γK̄0(k) and m is given by the order of L̂.

Eventually, inserting Eq. (10) into Eq. (7), the solution of (6) reads

ũ(k, t) = ũh(k, t) +
m∑

l=1

rl(k)
∫ t

0

dt′ exp(λl(k)(t− t′))s̃(k, t′),

assuming the stimulus onset at t = 0. If all roots are located in the lower complex
plane, i.e. Im(Ωl(k)) = Re(λl(k)) < 0, Eq. (12) owns stable solutions for bounded
deterministic stimuli and random fluctuations described by a Lévy process in the
case of finite kernels [66].
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As mentioned in the introduction, 1/fα-fluctuations have been found in neu-
ral populations. To detect this behaviour in our model, we briefly discuss the
temporal power spectrum of the resulting field u(x, t). The Fourier back transfor-
mation of (12) yields

u(x, t) = ũh(x, t)

+
1√
2π

m∑

l=1

∫ t

0

dt′
∫ ∞

−∞
exp(λl(k)(t− t′))s̃(k, t′)rl(k) exp(ikx)dk,

while ũh(x, t) represents the homogeneous solution of Eq. (3). Now considering
external uncorrelated Gaussian noise with

〈s̃(k, t)〉 = 0, 〈s̃(k, t)s̃(k′, t′)〉 = Qδ(k − k′)δ(t− t′),

the autocorrelation function reads

C(t, τ) = 〈u∗(x, t)u(x, τ)〉 =
Q

π

m∑

l=1

∫ ∞

−∞
Pl(k) exp(λl(k)|τ − t|)dk (12)

with

Pl(k) = −
m∑

j=1

r∗j (k)rl(k)
λ∗j (k) + λl(k)

.

Here, Q gives the overall strength of the fluctuation force, 〈·〉 represents the ensem-
ble average and ∗ denotes the complex conjugate. In addition, Eq. (12) assumes
t, τ →∞. Since the present work treats the neural resting state, the neural activ-
ity is stationary in time. Hence applying the Wiener–Khinchine theorem [67] the
power spectrum reads

S2(ω) =
−4Q

(2π)3/2

m∑

l=1

∫ ∞

−∞

λl(k)
ω2 + λ2

l (k)
Pl(k)dk. (13)

The function Pl(k) gives the distribution of time scales 1/λl(k). Recalling the
origins of 1/fα-activity [16], these multiple time scales may yield intermediate
frequency regimes of S2(ω) ∼ 1/ωα with 0 < α < 2. Subsequently, the presence
of 1/fα-activity depends mainly on the synaptic connectivity kernels Ke,i and on
the relation of the synaptic to the axonal time scales defined by h(t) and ve,i,
respectively. Closer investigations follow in Sect. 5 for specific kernels.

4. Stability and critical fluctuations for specific kernels

This section discusses the case of the exponential impulse response h(t) =
exp(−t/τ)/τ , i.e. L̂t = ∂/(τ∂t)+1. The parameter τ represents the synaptic time
scale. After re-scaling t → t/τ , we obtain L̂t = ∂/∂t + τ and all time variables
appear in relation to the synaptic time scale. Furthermore, we assume that the
neural field is driven by a fluctuating force. That is, we put

s(x, t) =
√

QΓ (x, t), (14)
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where Γ (x, t) corresponds to a Gaussian distributed fluctuating force that is un-
correlated in space and time like

〈Γ (k, t)〉 = 0, 〈Γ (k, t)Γ (k′, t′)〉 = 2δ(t− t′)δ(k − k′).

The parameter Q represents the noise amplitude.

4.1. Hopf bifurcation

At first, we treat recurrent, i.e. local, excitatory connections, which play
an important role in neural processing of somatic input signals. In addition, the
inhibitory connections are lateral at a fixed distance. This case may occur in cor-
tical areas, which participate in the thalamocortical projection system [68]. This
system of axonal connections exhibit reciprocal, i.e. forth-and-back, projections
from cortical areas to thalamic areas and thus introduce a constant temporal feed-
back delay. A previous study by Robinson et al. [43] showed that this feedback
represents an important mechanism for generating global α-activity. Since there is
poor knowledge in physiology about the distance distribution from the exiting to
the terminating spatial location, we choose a single distance for simplicity. Sub-
sequently, the kernels in (3) read

Ke(z) =
ge

2
√

D
exp(−|z|/

√
D), Ki(z) =

gi

2
δ(|z| − |R|)

with z = x − y. Here,
√

D and R represent the excitatory and inhibitory spatial
scale, respectively. For

√
D ¿ 1 and

√
D/ve ¿ 1, the excitatory propagation

delay is negligible yielding
∫ +∞

−∞
dy Ke(x− y)u(y, t−∆e)

≈
(∫ ∞

−∞
K(z)dz +

1
2

∫ ∞

−∞
K(z)z2 dz

∂2

∂x2

)
u(x, t)

= ge

(
1 + D

∂2

∂x2

)
u(x, t).

Hence, the local excitatory coupling is equivalent to diffusive coupling with diffu-
sion coefficient D.

Following the analysis steps in Sect. 2 the corresponding delay differential
equation in Fourier space becomes

∂

∂t
ũ(k, t) =

[
γge(1−Dk2)− 1

]
ũ(k, t)

−γgi cos(kR)ũ(k, t− t0) +
√

QΓ (k, t) (15)
with the delay t0 = R/vi. Introducing the parameters

a(k) = 1− γge + γgeDk2, b(k) = γgi cos(kR), (16)
Eq. (15) can be written as



Critical Fluctuations and 1/fα-Activity of Neural Fields . . . 1029

∂

∂t
ũ(k, t) = −a(k)ũ(k, t)− b(k)ũ(k, t− t0) +

√
QΓ (k, t). (17)

That is, we deal with a linear stochastic delay differential equation for the Fourier
amplitudes ũ(k, t) that involves k-dependent parameters. Let us discuss Eq. (15) in
the context of the emergence of oscillatory behaviour. To this end, we first examine
the behaviour of the spatially homogeneous Fourier mode with k = 0. We have
a(0) = 1 − γge and b(0) = γgi. For k = 0 and a(0) ≥ b(0) > 0 Eq. (17) describes
a stable system both in the deterministic (Q = 0) [65, 69] and the stochastic case
(Q > 0) [51, 52, 70–72]. Therefore, we assume that b(0) > a(0) > 0. Then, for
k = 0 and Q = 0 the linear model (17) exhibits a stable (unstable) fixed point
ũst(0) = 0 for delays t0 smaller (larger) than the critical delay

t0,c =
1
Ω

arccos
(
−a(0)

b(0)

)
, Ω =

√
(b(0))2 − (a(0))2. (18)

At t0 = t0,c there is a Hopf bifurcation [65, 69] at frequency Ω . Likewise, for
k = 0 and Q > 0 Eq. (17) exhibits stationary distributions for delays t0 < t0,c,
whereas for delays t0 > t0,c stationary distributions do not exist [51, 52, 70–72].
The stationary distributions for t0 < t0,c correspond to Gaussian distributions
with vanishing mean and variance σ2 defined by

σ2 =
Q

2
(1 + Ω)−1b(0) sin(Ωt0)
a(0) + b(0) cos(Ωt0)

. (19)

It is clear from Eq. (19) that σ2 becomes infinite at the bifurcation point.
Furthermore, from Eq. (17) it follows that the first moment M1 = 〈ũ(0, t)〉 evolves
like

d
dt

M1(t) = −a(0)M1(t)− b(0)M1(t− t0). (20)

Equation (20) can be treated just as Eq. (17) for Q = 0. That is, Eq. (20)
describes a Hopf bifurcation and for t0 > t0,c the first moment M1 oscillates
with a gradually increasing amplitude. Next, let us consider Fourier modes with
nonvanishing k-values. To this end, we need to distinguish between two cases:
|k|R ≤ π/2 and |k|R > π/2. In the first case, we have a(k) > a(0) and b(k) < b(0).
Consequently, if the homogeneous Fourier mode is stable, then all Fourier modes
with |k|R ≤ π/2 are stable. In the second case, we assume that the diffusion
coefficient D satisfies the inequality geDk2 ≥ gi for |k|R > π/2, which implies
that a(k) > b(k) holds (e.g. one may choose D = 4giR

2/(geπ
2)). Then, the

Fourier modes with |k|R > π/2 are stable as well.
Taking a neurophysiological point of view, it is of particular interest to study

the impact of the control parameter γ (see Sect. 2). From Eq. (18) it follows that
the critical parameter γc is given by

t0

√
γ2
c g2

i − (1− γcge)2 = cos
(
−1− γcge

γcgi

)
. (21)
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In sum, for delays t0 < t0,c or control parameters γ < γc all Fourier modes
described by Eq. (17) correspond to stable modes that have in the deterministic
case stable fixed points at ũst(k) = 0 and exhibit in the stochastic case Gaussian
stationary distributions with vanishing mean and variance

σ2(k) =
Q

2
1 + w−1(k)b(k) sin(w(k)t0)

a(k) + b(k) cos(w(k)t0)
, (22)

where w(k) is defined by

w(k) =
√

b2(k)− a2(k) (23)
(let us note that Eq. (22) holds even if w corresponds to an imaginary value [73]).
As a result, the neural field is spatially homogeneous. For t0 → t0,c or γ → γc the
variance of the amplitude of the homogeneous Fourier mode with k = 0 becomes
infinite, whereas the variances of all other Fourier amplitudes are still finite, see
also Fig. 1. In this sense the neural field exhibits critical fluctuations at the
bifurcation point. If t0 = t0,c + ε or γ = γc + ε with ε positive and small, then
the amplitude ũ(0, t) and amplitudes ũ(k, t) with small k-values become unstable

Fig. 1. Variance σ2 as a function of k for several parameters of γ as computed from

Eq. (22). For γ → γc the variance of the critical mode with kc = 0 tends to infin-

ity, whereas the variances of all other modes remain finite. Control parameters (from

bottom-up): γ = 1.00, γ = 1.02, γ = 1.04. Other parameters: t0 = 1.0, ge = 0.2,

gi = 2.0, Q = 1.0, R = 10, D = 4giR
2/(geπ

2) and γc = 1.05.

Fig. 2. Evolution of the first moment M1(t) of the critical mode kc = 0 computed from

Eq. (20) for two cases: γ = 0.9 < γc (dashed line) and γ = 1.1 > γc (solid line). Other

parameters as in Fig. 1.



Critical Fluctuations and 1/fα-Activity of Neural Fields . . . 1031

and the first moments M1(k, t) = 〈ũ(k, t)〉 of these modes oscillate with gradually
increasing amplitudes, see Fig. 2. Consequently, constant oscillations emerge in
the neural field and we deal with critical fluctuations at the bifurcation point of
constant waves.

4.2. Turing bifurcation

Now, we discuss the case of local excitation and lateral inhibition in intracor-
tical fields. This Mexican-hat connection scheme is prominent in somato-sensory
cortical areas, e.g. in the visual and auditory system. In this context, the spatial
dimension represents a feature dimension. For instance, orientation selectivity of
visual stimuli necessitates a Mexican-hat topology of the visual cortex, i.e. local
excitation and lateral inhibition, while the orientation angle of the visual stimulus
represents the feature variable [74, 75]. That is, we use [38]

Ke(x) =
ge

2re
exp(−|x|/re), Ki(x) =

gi

2ri
exp(−|x|/ri),

where re,i denote the excitatory and inhibitory spatial ranges with re < ri. Using
the previous re-scaled temporal operator L̂t = ∂/∂t + 1 and ve = vi = v, Eq. (6)
becomes

∂

∂t
ũ(k, t) = −ũ(k, t)

+vγ

∫ ∞

0

dτ

(
ge

re
exp(−vτ/re)− gi

ri
exp(−vτ/ri)

)

× cos(kvτ)ũ(k, t− τ) +
√

QΓ (k, t). (24)
The ansatz ũ(k, t) = uk exp(λt) yields the characteristic equation

λ + 1 = γ

[
ge

1 + λre/v

(1 + λre/v)2 + re
2k2

− gi
1 + λri/v

(1 + λri/v)2 + ri
2k2

]
, (25)

which corresponds to a polynomial of 5th order. The first moments M1(k, t) =
〈ũ(k, t)〉 evolve like

∂

∂t
M1(k, t) = −M1(k, t) + vγ

∫ ∞

0

dτ

(
ge

re
exp(−vτ/re)− gi

ri
exp(−vτ/ri)

)

× cos(kvτ)M1(k, t− τ). (26)
In the following, we will discuss the model (24) in the context of a Turing bifur-
cation [38]. In order to illustrate our main objective, it is sufficient to study a
particular parameter set for which the Lyapunov spectrum λ(k) exhibits at the
critical control parameter γc a pair of vanishing Lyapunov exponents λ(k) with
k = ±kc and kc > 0. Figures 3 and 4 show such a spectrum. In line with our
general consideration in Sect. 3, we can assume that for γ < γc the system is
stable. Due to the linearity of the problem, it is reasonable to assume that the
amplitudes ũ(k, t) are distributed like Gaussian distributions with vanishing mean
values and finite variances. For γ → γc the variances of the critical Fourier ampli-
tudes ũ(±kc, t) become infinite, see also Fig. 5. Finally, for γ slightly larger than
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Fig. 3. Real part of the Lyapunov spectrum λ(k) at the bifurcation point γ = γc as

obtained from Eq. (25) for a particular set of parameters. Critical modes with λ(k) = 0

occur at k = ±kc and kc > 0. Parameters: ge = 1.0, gi = 0.2, re = 0.2, ri = 1.0, v = 1.0,

and γc = 1.158.

Fig. 4. Upper band of Fig. 3. The critical modes are at k = ±kc and kc ≈ 1.2. The

homogeneous Fourier mode is stable at the critical point (i.e. λ(0) < 0).

Fig. 5. Variance σ2(k) as obtained by solving Eq. (24) numerically for γ = 1.0 and

γ = 1.1 (from bottom-up) using an Euler forward scheme [67]. The variance has a

maximum at the critical mode kc = 1.2. Other parameters as in Fig. 3.

Fig. 6. Evolution of the first moment M1(kc, t) of the critical mode with kc = 1.2

computed from Eq. (26) for γ = 1.0 < γc (dashed line) and γ = 1.17 > γc (solid line).

For γ = 1.17 > γc the first moment M1(0, t) of the homogeneous Fourier mode is shown

as well (diamonds). The homogeneous Fourier mode is stable, whereas the critical mode

is unstable. Other parameters as in Fig. 3.
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γc the Fourier amplitudes ũ(±k, t) with k ≈ ±kc become unstable. Since we deal
with a Turing bifurcation point at which the imaginary parts of λ(±kc) vanish,
from Eq. (26) it follows that the first moments M1(k, t) with k ≈ ±kc increase
monotonically with time, see Fig. 6. In sum, we deal here with the emergence of
a Turing pattern in the neural field and with critical fluctuations at the Turing
bifurcation point.

5. 1/fα-Fluctuations for specific kernels

Finally, this section discusses the power spectrum of the resulting spatiotem-
poral field according to the results in Sect. 3. The assumed connectivity is local
and excitatory with K(x) = Ke(x) taken from Sect. 4.1, it is v = ve and the
re-scaled temporal operator L̂t = ∂/∂t + 1 is applied. In addition, we recall the
coarse-graining of the neural field. Let the diameter of the smallest spatial ele-
ment, i.e. the macrocolumn, be ∆x, then there is a maximum spatial frequency
kmax = 2π/∆x. That is only spatial modes on larger spatial scales than ∆x

contribute to the spatiotemporal activity.

5.1. Infinite transmission speed
In a first analysis step, the delay by axonal transmission is negligible, i.e.

v →∞. Then the quantities in Eq. (13) read m = 1, r = 1 and

Ω(k) = −i
(

1− gγ

1 + Dk2 + 1

)
, P (k) =

1 + Dk2

2[gγ − (1 + Dk2)]
.

Recalling the relation λ(k) = −iΩ(k), the maximum time scale 1/λ(k) occurs at
k = 0 with λ(0) = −(1 − γg). That is γc = 1/g represents the critical control
parameter and λ(k) < 0∀k, γ < γc. The power spectrum reads

S2(ω) =
2Q

(2π)3/2
√

D

∫ k0

−k0

(u2 + 1)2

ω2(u2 + 1)2 + (u2 + 1− gγ)2
du (27)

with k0 = kmax

√
D = 2π

√
D/∆x. That is the power spectrum depends only on the

ratio of the spatial interaction scale
√

D to the diameter of the ensemble entity ∆x.
Figure 7 shows the power spectrum for several control parameters and fixed ratio√

D/∆x. For ω > 1, the plot reveals Brownian fluctuations with S2(ω) ∼ 1/ω2 for
all control parameters. In contrast, for ω < 1 the plot reveals white noise activity
with S2(ω) ∼ const far from the stability threshold, i.e. γ ¿ γc, while 1/fα with
0 < α < 2 activity occurs near the stability threshold. In more detail, in the case
of γ = 0.95/g the spectrum exhibits S2(ω) ∼ 1/ω0.15 with 0.02 < ω < 0.2, while
γ = 0.99/g yields the rough approximation S2(ω) ∼ 1/ω0.37 in the frequency range
0.003 < ω < 0.8. Hence, 1/fα-activity occurs near the stability threshold only
and α increases with increasing control parameter γ.

In addition, the corresponding autocorrelation functions (12) reveals further
information on the resulting time scales and we obtain from Eq. (12)

C(τ) =
Q

2π
√

D

∫ k0

−k0

1 + u2

gγ − 1− u2
exp

(
(gγ − 1− u2)/(1 + u2)τ

)
du.
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Fig. 7. The log-log-plot of the power spectrum from Eq. (27) for various control param-

eters γ and infinite transmission speed. The inset shows the log-log-plot of the power

spectrum for a wider frequency range and the lowest and highest control parameter cor-

responding to the line style encoding. The different line types represent γ = 0.99γc (solid

line), γ = 0.95γc (dashed line), γ = 0.9γc (dotted line) and γ = 0.5γc (dotted-dashed

line). Further parameters are k0 = 200, i.e. ∆x ≈ √
D/32, and 2Q/((2π)3/2

√
D) = 1.0.

Fig. 8. The log-plot of the autocorrelation function C(|t− t′|) = C(τ) from Eq. (12) for

various control parameters γ and infinite transmission speed. The different line types

represent γ = 0.99γc (dotted-dashed line), γ = 0.95γc (solid line), γ = 0.9γc (dashed

line) and γ = 0.1γc (dotted line). Further parameters are k0 = 200, i.e. ∆x ≈ √
D/32,

and 2Q/((2π)3/2
√

D) = 1.0.

Figure 8 shows C(τ) for various control parameters. Far from threshold the fluctu-
ations evolve on a single time scale τ0 with C(τ) ∼ exp(−τ/τ0), while approaching
the stability threshold γ → γc the underlying time scales separate into short-term
scales, i.e. τ → 0, and long-term scales with τ → ∞. That is long-term mem-
ory effects occur near the threshold. Furthermore, the increase in the control
parameter increases both the short-term and long-term correlation times. In this
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context, we mention the similarity to the results of a recent work [76] revealing
the prebifurcation rise in correlation time near the bifurcation threshold in a noisy
nonlinear map.

A further study on the impact of the ratio
√

D/∆x to the spectral properties
reveals a decreasing exponent α while increasing this ratio for ω < 1 (Fig. 9). That
is long-range (short-range) interactions yield low (high) values of α. In addition,
the plotted spectra exhibit the same slope for ω > 1, Brownian activity is retained
for large frequencies.

Fig. 9. The log-log-plot of the power spectrum from Eq. (27) for various ratios
√

D/∆

and infinite transmission speed. The different line types represent
√

D = 128∆x (dotted-

-dashed line),
√

D = 8∆x (solid line) and
√

D = ∆x/2 (dashed line). Further parameters

are γ = 0.99γc and Q/(2π
√

2πD) = 1.0.

Essentially in the case of negligible spatial interaction
√

D/∆x → 0, the
spectrum approaches the Lorentz-function

S2(ω) =
2Qk0

π
√

2π

1
ω2 + (1− gγ)2

. (28)

It is well known [77] that such a Lorentz-spectrum reflects a relaxation process at
time scale 1/(1− gγ). That is negligible spatial interaction yields relaxation on a
single time scale. This behaviour is reasonable, as

√
D/∆x → 0 yields the spatial

decoupling of the neural field into local elements. Since the applied external noise
does not introduce spatial correlations (cf. Sect. 3) either, each element of the
neural field responses to the applied external noise by relaxation on the same time
scale. Hence, 1/fα may occur for spatially coupled fields only. This finding is
in accordance with previous models on power spectra at anesthetic-induced first-
-order phase transitions [26]. That model neglects spatial interactions and exhibits
S2(ω) ∼ 1/ω2 at the transition threshold, i.e. no 1/fα-activity.
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5.2. Finite transmission speed

Now, we examine how finite transmission speeds affect the power spectrum.
In the case of large transmission speeds v À ω utilizing Eq. (11) yields m = 1,

r = 1,

Ω(k) = i(1 + Dk2)
γg − (1 + Dk2)

(1 + Dk2)2 + (1−Dk2)gγ
√

D/v
,

P (k) = − (1 + Dk2)2 + (1−Dk2)gγ/v

2(1 + Dk2)(gγ − 1−Dk2)
,

and the power spectrum

S2(ω) =
2Q

(2π)3/2
√

D

×
∫ k0

−k0

[
(u2 + 1)2 + gγT (1− u2)

]2

ω2 [(u2 + 1)2 + gγT (1− u2)]2 + (1 + u2)2(u2 + 1− gγ)2
du (29)

with T =
√

D/v. We remark that T may be interpreted as the interaction time of
spatial connections. Further v → ∞ yields vanishing interaction time T → 0 and
Eq. (29) casts to Eq. (27).

In the case of T < 2/γg and γg < 1 it is −1 < λ(k) < 0, i.e. temporal
stability. For these parameter ranges the largest time scale occurs at k = 0 with
1/λ(0) = 1/v̄(1− 1/γg) and thus the critical control parameter is γc = 1/g. That

Fig. 10. The log-log-plots of the power spectrum from Eq. (29) for various control pa-

rameters γ and finite transmission speeds, i.e. non-vanishing spatial interaction times T .

The left panel shows a linear estimation of log10 S2(ω) for intermediate frequencies and

T = 0.33 by a dashed line. The estimated value α = 0.66 is valid for all three val-

ues of T . Similarly, the value α = 0.62 in the center part is valid for all T . Both latter

parts show white noise activity and Brownian activity for ω → 0 and ω > 1, respectively.

In contrast, the right part does not exhibit frequency ranges with 0 < α < 2 and shows

white noise activity and Brownian activity only. The different line types represent the

interaction times T = 0.33 (dotted line), T = 0.10 (dashed line) and T = 0.001 (solid

line). Parameters are chosen to k0 = 2π · 16 and 2Q/((2π)3/2
√

D) = 1.0.
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is γ < γc ensures the temporal stability of the field dynamics. Figure 10 shows
the power spectra for various control parameters and values of T . Similar to the
previous section, 1/fα-activity occurs near the threshold γ ≈ γc only in contrast to
the case of lower control parameters γ < γc. Further, it turns out that increasing
T over a large range with fixed γ increases the overall power of the field but does
not change the values of α. Summarizing, at control parameters γ < γc large
transmission speeds, i.e. small spatial interaction times, may change the overall
spectral power but do not affect the value of α.

6. Discussion
The previous sections discuss the stability and stochastic properties of evoked

neural activity. First we show that the transmission delay in the spatial domain
reduces to a distribution of constant delays in the corresponding Fourier domain.
Hence, the linear neural field evolves in Fourier-space according to affine delay
differential equations. Further investigations on the evoked response to exter-
nal stimulation reveal that only the characteristic roots of the delay differential
equations determine the field stability. In addition, the temporal spectrum of
the evoked activity turns out to depend mainly on the distribution of the spatial
synaptic connectivities and the synaptic delay. These findings are valid for general
connectivity kernels. In order to learn more about the evoked response to random
fluctuations, we discuss the stability and temporal power spectrum in the case of
specific synaptic connectivities. In a first example, it is shown that short-range
excitation is equivalent to diffusive interaction. An additional discrete inhibitory
interaction yields a Hopf-bifurcation for the spatially constant mode. We derive
the variance of the stationary activity distribution for all Fourier modes and find
a divergent fluctuation variance at the bifurcation threshold of the constant mode.
That is critical fluctuations occur at the oscillatory bifurcation threshold. Similar
constant oscillations have been found in deterministic neural networks [78], while
the critical fluctuations have been found experimentally in oscillatory neural ac-
tivity [22]. In a further discussion, we examine neural fields with local excitation
and lateral inhibition and find critical fluctuations at the threshold of a Turing
bifurcation.

Eventually, the final section focus to 1/fα-activity in purely diffusive neural
fields. The evoked power spectrum reveals 1/fα-fluctuations for small frequen-
cies near the bifurcation threshold, while for large frequencies the power spectrum
shows 1/f2-activity reflecting Brownian motion dynamics. These findings reveal
the presence of both, a short-term and a long-term correlation time, that is long-
-term memory effects near the stability threshold. Remarkably the spectral prop-
erties are different far from the bifurcation threshold, where the power spectrum
shows similarity to the Lorentz-spectrum indicating a single relaxation process.
That is the fluctuations exhibit white noise behaviour for small frequencies and
Brownian motion properties for large frequencies. In addition, all these findings
are retained for both infinite and large finite transmission speeds.
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Several studies pointed out that 1/fα-fluctuations occur in the case of mul-
tiple time scales. The present work confirms this finding. However, in our neural
model the multiple time scales originate from the multiple spatial scales. In addi-
tion, these 1/fα-fluctuations occur near the bifurcation threshold only, though the
neural system exhibits multiple time scales for a large range of control parameters.
Hence, this finding fosters the hypothesis of necessary criticality in a system for
the occurrence of 1/fα-activity (cf. [21]). Further the successful modelling of crit-
ical fluctuations in the presence of transmission delay in nonlocal neural models
is in accordance with experimental findings [10] and thus supports our mesoscopic
model based on neural populations. The fact that our rather simple neural model
explains 1/fα-activity in neural activity and indicates its necessary neural mecha-
nism, namely spatial coupling. Future work may include further important neural
mechanisms as inclusion of spike-timing effects [56, 58], temporal feedback delay
present in the thalamocortical system and the temporal adaptation of synaptic
strength, i.e. inclusion of plasticity effects.
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