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In an approach based on the nonlinear Riccati-type differential equation

for the ratio of the level population amplitudes, rather than on the optical

Bloch equations, we describe the response of a two-level system to a few-

-cycle light pulse of intensity from the regime of extreme nonlinear optics,

i.e., when the Rabi and transition frequencies are comparable. Emphasis is

put on the dependence of the spectra of the scattered light on the carrier-

-envelope phase, duration and strength of both resonant and off-resonant

pulses.

PACS numbers: 42.50.Md, 42.50.Hz, 42.65.Ky, 42.65.Re

1. Introduction

Recent experiments [1–3] on scattering of ultrashort (several femtoseconds),
moderately intense (several TW/cm2) light pulses by semiconductors (ZnO, GaAs)
have approached the regime of what is called extreme nonlinear optics. In the ex-
periments, the optics has been extreme with respect to both the Rabi frequency
reached, in fact comparable to the band-gap transition frequency due to large
dipole transition moment, and pulse duration which was as short as about twice
the optical period. Probably, the most spectacular observations were the spectral
peaks in the scattered light occurring at the positions of even-order harmonics of
the incident-pulse frequency and the dependence of these peaks on the phase of the
carrier frequency with respect to the pulse envelope, the carrier-envelope phase.
In the two-band approximation, the response of a semiconductor to a light pulse
is known [4] to be described by the so-called semiconductor Bloch equations. In
their mathematical structure, the semiconductor equations are identical with the
familiar optical Bloch equations [5] for the two discrete-level system, but with the
Rabi frequency modified additively by Coulombic interactions. Thus, emphasis
has been put in [6] on solving (predominantly numerically and in part analyti-
cally) the optical Bloch equations in the extreme region without employing the
conventional rotating-wave approximation (RWA) and with the neglect of trans-
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verse and longitudinal dampings, in fact, irrelevant on the time scale of few-cycle
pulses. When light propagation effects could not be disregarded, the set of cou-
pled Bloch–Maxwell equations has been solved numerically, instead. Interestingly,
main features of the spectra produced from semiconductors have been successfully
described in the framework of this fundamental two-level model of quantum and
nonlinear optics. In the past, this model has also been used to describe nonlinear
scattering of light by molecular ions [7–9] and double quantum wells [10, 11].

Appreciating the role the two-level models play in different branches of
physics, we describe their optics, with particular emphasis on extreme nonlin-
ear optics, in an alternative approach based on a single, nonlinear Riccati-type
differential equation for the ratio of level population amplitudes. As a matter
of fact, this equation takes its origin from the treatment of the magnetic reso-
nance by Bloch and Siegert [12]. Adapted to the optical resonance [13], it was
then solved analytically in a perturbative way to discuss non-RWA effects [13, 14].
In the present paper we give an iterative algorithm solving the Riccati equation
for arbitrary strengths, shapes, durations, and carrier-envelope phases of opti-
cal pulses. With this algorithm we study the evolutions of population inversion,
induced dipole moment and electric field of scattered light as well as the corre-
sponding spectra in the regime of extreme optics. A part of our spectra, obtained
with the use of this algorithm, could be compared with those obtained from nu-
merical integration of the optical Bloch equations and the available experimental
data [1–3, 6]. In this case, we have found general agreement. At a reasonably
chosen time step the speed of our algorithm has been found competitive with that
of the Mathematica package. The algorithm can also be used to solve the inverse
problem, i.e., how to design the driving pulse to produce a desired population
dynamics and spectra.

2. The algorithm

We apply the standard expansion, ψ(t) = b1(t)|1〉 + b2(t)|2〉, for the wave
function ψ(t) of the system of two different-parity discrete levels of eigenfrequencies
ω1 and ω2 > ω1 in a pulsed laser field ε(t) = ε0h(t), where h(t) = f(t) cos(ω0t+φ)
describes the electric-field evolution with 0 ≤ f(t) ≤ 1 having the sense of pulse
envelope, ω0 the carrier frequency and φ the carrier-envelope phase. Without the
RWA, the time-dependent population amplitudes, b1(t) and b2(t), are then to be
found from the set of coupled linear equations, e.g. [5, 8]:

i
dbk

dt
= ωkbk − Ω(t)bl, (1)

where both k and l take the values 1, 2 with the constraint l 6= k, and Ω(t) =
ΩRh(t) is the instantaneous Rabi frequency with ΩR = µε0/h̄ being the usual
Rabi frequency as determined by the electric-dipole transition matrix element,
µ, and the peak field value, ε0. In the following we, however, reformulate the
problem in terms of the ratio r(t) = b2(t)/b1(t) of the population amplitudes. By
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differentiating r over time, the set of two Eqs. (1) is known [12–15] to be replaced
by a single equation for r, a nonlinear Riccati-type differential equation [16]:

i
dr

dt
= (r2 − 1)Ω(t) + ω21r, (2)

where ω21 = ω2 − ω1 is the transition frequency between the bare levels.
The last equation has no known general analytical solution covering the

whole strength and time scales of the pulse. However, for an arbitrary strength,
quite simple solutions are available for a sequence of short time intervals, each of
duration ∆ much shorter than the optical period T = 2π/ω0. Within, let us say,
the j-th such an interval of the running time (j − 1)∆ ≤ t = tj ≤ j∆, the field
evolution function h(t) can be considered nearly constant and approximated by
hj = h(t = (j− 1

2
)∆), i.e., its value in the middle of the interval. The index j runs

the integers 1 ≤ j ≤ 2NK for a N -cycle pulse whose half a cycle has been divided
into K equal-duration intervals ∆. Due to the above approximation of piecewise
constant field, the analytical solution of Eq. (2) at the end of the j-th interval,
r(t = j∆) = rj , turns out to be interrelated with that at the beginning of the j-th
interval, r(t = (j − 1)∆) = rj−1, in the following way [17]:

rj =
2Ωj −

[
ω21 + iΩeff

j cot(Ωeff
j ∆/2)

]
rj−1

ω21 − iΩeff
j cot(Ωeff

j ∆/2) + 2Ωjrj−1
, (3)

where Ωj = ΩRhj and Ωeff
j =

√
4Ω2

j + ω2
21.

We use Eq. (3) to formulate an iterative algorithm of solution of the general
Eq. (2) and, thus, a description of the response of a two-level system to a strong,
ultrashort laser pulse. Irrespective of the pulse strength, we can always choose
the time interval ∆ sufficiently short to satisfy the inequality Ωeff

j ∆/2 ¿ 1 which,

in practice, translates into ∆ ¿ 2/
√

4Ω2
R + ω2

21, equivalent to K À
√

4x2 + y2,
where x = ΩR/ω0 is a dimensionless strength parameter and y = ω21/ω0 a dimen-
sionless level-separation parameter. With this choice, the cotangent function is
approximated by its leading term converting Eq. (3) to its simplified version

rj =
2Ωj∆− (ω21∆ + 2i)rj−1

ω21∆− 2i + 2Ωj∆rj−1
=

2πx
K hj −

(
πy
K + 2i

)
rj−1

πy
K − 2i + 2πx

K hjrj−1

, (4)

where now the field evolution function h(t) is expressed in terms of a dimensionless
time parameter τ = ω0t, meaning hj = h

[
τ = (j − 1

2
) π

K

]
. For fixed parameters x

and y, we establish K, reasonably, and then apply Eq. (4) to generate from the
initial r0 = b2(0)/b1(0) all successive rj for later points j π

K of the time scale τ .
Equation (4) allows us to cover the time axis arbitrarily dense and thus to describe
the dynamics of the system in any detail. In the present paper, we assume r0 = 0
meaning that the lower level |1〉 is initially occupied.

From the found values of rj we straightforwardly calculate the population
inversion, wj , and the induced dipole moment, dj , at successive discrete times
τ = j π

K of the evolution. Since for any time, w = |b2|2− |b1|2 and d = 2µRe(b∗1b2)
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[5], we have from the population conservation law, |b1|2 + |b2|2 = 1, and the
definition of r that

wj =
|rj |2 − 1
|rj |2 + 1

(5)

and

dj = 2µ
Re(rj)
|rj |2 + 1

. (6)

Since for a two-level system, the induced dipole moment satisfies the equation
d̈ = −ω2

21d− 2µω21Ω(t)w [18], the evolution of the electric field produced by this
dipole can be calculated from

εsc
j = εsc

(
τ = j

π

K

)
∼ −y2dj − 2µyxhjwj

=
−2µy

|rj |2 + 1
[yRe(rj) + xhj(|rj |2 − 1)]. (7)

Finally, to a given discrete function gj = g(τ = jπ/K) one can assign its discrete
Fourier transform

G(z) =
1√
n

n∑

j=1

gj exp[2πi(j − 1)(z − 1)/n], (8)

where in our case n = 2NK. Equation (8) determines the frequency spectrum,
|G(z)|2, of the time-dependent function g.

3. Applications

We now apply the above procedure, primarily based on the algorithm of
Eq. (4), to the regime of extreme optics. The pulse parameters to be chosen are
inspired by the recent experiments [1, 2], real or/and numerical ones, in which a
few-cycle optical pulses were applied to different semiconductor materials modeled
by two bands.

3.1. Off-resonant excitation

In the off-resonant experiment by Tritschler et al. [1] on ZnO semiconductor
(µ = 0.19e nm = 9.12 D), the applied pulse strength (ε0 = 6 × 109 V/m →
5 TW/cm2 = 1.42 × 10−4 a.u. of intensity) and frequency (h̄ω0 = 1.5 eV, half
of the band gap energy) translate into our x = 0.76 and y = 2 parameters. We
approximate the pulse shape as f(τ) = sinc

[
(τ − 1

2τmax)/τ0

]
, where sinc(x) =

sin(x)/x, τ0 is related to the full width at half maximum (FWHM) of intensity by
τ0 = τFWHM/2.7831, and the scaled running time 0 ≤ τ ≤ τmax does not exceed
τmax = 2πτ0 = 2.257τFWHM ensuring f(τ) to be positive at any point of the time
scale. From now on we write τFWHM = 2πNFWHM with NFWHM meaning the width
in units of the optical period T = 2π/ω0 = 2.76 fs. We adopt the experimental
[1] FWHM = 5 fs corresponding to NFWHM = 1.81 and, additionally, assume the
carrier-envelope phase φ = 0. For this incident pulse we show in Fig. 1 some
results obtained from Eqs. (4)–(8) with K = 200 satisfying the required condition
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Fig. 1. (a) Evolution of the scattered field (solid line) in comparison to that of the

incident field (dashed line), (b) spectrum of the induced dipole, (c) spectrum of the

scattered light (solid line) compared to that of the incident light (dashed line). All

curves have been obtained for the h(τ) = sinc[(τ− 1
2
τmax)/τ0] cos τ incident pulse of τ0 =

τFWHM/2.7831, τFWHM = 2πNFWHM, NFWHM = 1.81, τmax = 2πτ0 and the strength-

-frequency parameters x = 0.76 and y = 2 (off-resonant excitation). In (a), the curves

are normalized to the same height. In (a), (b) and (c), the vertical axes are scaled in

relative units.

K À
√

4x2 + y2. However, we have found that for K = 50, i.e. diminished by
the factor of 4, the obtained results remain the same, but required computer time
is shortened substantially. As seen from Fig. 1a, the calculated time evolution
of the scattered field (solid line) differs markedly from that of the incident field
(dashed line). The same concerns the frequency spectrum found from Eq. (8).
In Fig. 1b we show the power spectrum of the induced dipole moment, |d(z)|2,
and in Fig. 1c the power spectra, |ε(z)|2, of the scattered (solid line) and incident
(dashed line) fields. Though differing in details, the |d(z)|2 and |ε(z)|2 spectra give
qualitatively the same information on the frequency components included. The
most interesting result is the peak at the position of the second (z = ω/ω0 ≈ 2)
harmonic of the pulse frequency ω0, appearing due to interference of tails of the
neighboring spectrally broad odd components. The peak at z ≈ 2 has been given a
lot of attention by Tritschler et al. [1], who named it the third harmonic in disguise
of the second harmonic. The height of our peak at z ≈ 2, in relation to the heights
of the neighboring peaks, nearly agrees with the result of the numerical experiment
of Tritschler et al. (Fig. 1 in [1]) exploiting the optical Bloch equations, though a
slightly different pulse envelope was used in the experiment (the long-time tails of
the sin(x)/x function were suppressed by a proper Gaussian).

The peak at z ≈ 2, as being an effect of the broad spectrum of the incident
pulse, vanishes with increasing duration of the pulse. This is confirmed by Fig. 2
showing the calculated power spectrum of the induced dipole versus integer mul-
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Fig. 2. Evolution of the spectrum from Fig. 1b with increasing pulse duration

NFWHM = 1.81n (n = 1, 2, 3, 4, 8 and 14) measured in units of optical period of

the incident light.

Fig. 3. Effect of carrier-envelope phase φ on the spectrum from Fig. 1b. The peak

around z = 1 has been suppressed by a factor of 104 to include it in the figure.

tiplicity of the originally assumed pulse length (|d(z)|2 versus NFWHM = 1.81n;
n = 1, 2, 3, 4, 8, 14). In general, the increase in the pulse length results in increasing
the fundamental and third-harmonic peaks and decreasing the peak around z ≈ 2.
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As seen, the increase in the pulse length by a factor of n = 8 results in practically
complete suppression of the peak around z ≈ 2. This figure clearly shows that the
peak around z ≈ 2 is a few-cycle effect and vanishes in the conventional regime of
many-cycle pulses.

Due to its interference origin, the peak around z ≈ 2, particularly well pro-
nounced when NFWHM = 1.81, exhibits sensitivity to the carrier-envelope phase φ.
The calculated oscillatory φ-dependence with the period of π is shown in Fig. 3.

3.2. Resonant excitation

For the pulse shape as previously and φ = 0, we change the parameters into
x = 1.236, y = 1 and NFWHM = 1.92, which correspond to the conditions un-
der which Mücke et al. [2] have integrated numerically the coupled Maxwell–Bloch
equations for the GaAs semiconductor (µ = 0.5e nm = 24 D, ε0 = 3.5×109 V/m →
1.7 TW/cm2 = 4.8 × 10−5 a.u. of intensity, h̄ω0 = 1.42 eV → T = 2.92 fs,
FWHM = 5.6 fs). Due to the band-gap resonance (y = 1) the dynamics of the
system is now quite different. Some striking differences, calculated from our al-
gorithm (Eq. (4)) with K = 200, are shown in Fig. 4, where we compare the
evolutions of inversion and those of induced dipole for two cases, the present
resonant (y = 1, x = 1.236, NFWHM = 1.92) and the previous off-resonant
(y = 2, x = 0.76, NFWHM = 1.81) cases. The off-resonant pulse moves in-
stantaneously only a small part (0.175 at most) of the initial population towards
the higher state, while the resonant pulse moves the whole population from the
lower state via the upper state back to the lower state three times. These three

Fig. 4. Evolution of population inversion, (a), and that of induced dipole, (b), for

resonant (y = 1, x = 1.236, NFWHM = 1.92) and off-resonant (y = 2, x = 0.76,

NFWHM = 1.81) excitations. The dashed curves are the results of the RWA for the

resonant excitation.
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Rabi oscillations are roughly consistent with the calculated pulse area

A(τ = τmax) = x

∫ τmax

0

f(τ)dτ = 2xτ0

∫ π

0

sinc(u)du ≈ 3.7xτ0 ≈ 3.16(2π).

However, the actual evolution of the inversion by no means satisfies the famil-
iar w = − cos[A(τ)] law [5] because the strength parameter x is well beyond
the rotating-wave approximation requiring x ¿ 1. For the same reason, the ac-
tual induced dipole moment does not follow the d = µ sin[A(τ)] sin(τ) law of the
rotating-wave approximation for a resonant frequency [5].

As a result, the spectra are qualitatively different in the resonant case. In
Fig. 5 we show the spectrum of scattered light, |εsc(z)|2, which is composed of three
broad peaks at the positions of even harmonics (z ≈ 2, 4, 6). These peaks exhibit
the dependence on the carrier-envelope phase φ with the period of π (Fig. 6). The
φ-dependence of the peak at z ≈ 2 can be compared with the result of numerical
integration of the Maxwell–Bloch equations by Mücke et al. (Fig. 2b in [2]) and
we find agreement between the two results. As shown in Fig. 7, the peaks do
not vanish with increasing pulse duration, they get even more pronounced and
separated for longer pulses (NFWHM = 10 · 1.92). The qualitative differences in
the spectrum originate from a different mechanism of peak formation. In the
resonant case, it is predominantly the interference of different Mollow side bands
of two adjacent odd harmonics [6]. Since the creation of the Mollow side bands

Fig. 5. Spectrum of the scattered light in the case of resonant excitation (y = 1,

x = 1.236, NFWHM = 1.92).

Fig. 6. Dependence of the spectrum around z = 2 and z = 4 from Fig. 5 on the

carrier-envelope phase φ.



Extreme Nonlinear Optics . . . 967

Fig. 7. As in Fig. 5 but for a longer pulse of NFWHM = 10 · 1.92.

Fig. 8. As in Fig. 5 but for weaker pulses.

requires the appropriate pulse strengths, the spectrum from Fig. 5 changes its
character when varying x. In Fig. 8 we show the conversion of the even-z peaks
into odd-z peaks when making x smaller. The behavior of the spectrum around
z = 3, shown in Fig. 8b–d, is in qualitative agreement with that observed in a
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different resonant (y = 1) experiment of Mücke et al. [3] in which the 5 fs pulse
of the hyperbolic secant envelope (f(τ) = sech(τ/τ0), τ0 = τFWHM/1.763) has
produced the third harmonic peak from the GaAs semiconductor and converted
this peak into a doublet when increasing, in some range, the pulse area A related
to our parameter x through A = πτ0x.

4. Summary

In the form of Eq. (4) we have given an iterative algorithm for solving the
Riccati-type equation for the ratio of population amplitudes of a two-level system
in a pulsed oscillating field. The approach based on the Riccati-type equation
[12–15, 17] is an alternative to the commonly used one exploiting the optical Bloch
equations [1–7, 10, 11, 19–21]. Our algorithm suffers no approximations, like the
rotating-wave [5] and adiabatic [18] approximations. Applied to the regime of
extreme optics, the algorithm has provided the results on the population inversion
in the system, polarization of the system and spectra of scattered light versus
different parameters of the incident pulse like the central frequency, duration,
strength and carrier-envelope phase. A part of the results could be compared with
success with the existing experimental results or the results obtained by others
from integrating numerically the optical Bloch equations.

As a test of efficiency, we have compared the times consumed by a standard
personal computer when finding the evolutions of population inversion and induced
dipole from our algorithm and from the optical Bloch equations (du/dτ = yυ,
dυ/dτ = −yu−2xh(τ)w and dw/dτ = 2xh(τ)υ, in our terminology) solved by the
appropriate Mathematica package. For the very dense graining of the time axis
(K = 200 À

√
4x2 + y2 at the x, y parameters of this paper), our algorithm was

found to be less efficient by approximately a factor of 5. In practice, this factor is
not substantial in a few-cycle regime, where the overall computer-time consumed
is of the order of several seconds. However, at moderate graining (K = 50)
the results were obtained in a flash and the speed of our algorithm was found
competitive with that offered by the package Mathematica. Such a diminishing
of K has not introduced any change to the final results, because K still satisfies
the relation K À

√
4x2 + y2. An additional advantage of our algorithm is that

it offers a way for solving the inverse problem consisting in designing the driving
pulse ε(t) = ε0h(τ) that will cause a desired population dynamics (r(τ)) and
related spectra. Indeed, Eq. (4) allows to find xhj from the fixed values of rj−1

and rj . We have checked that, for the x, y parameters of this paper, the inversion
procedure works well.
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