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Realistic calculations of photoluminescence spectra for a 20 nm quan-

tum well at a filling factor ν = 1/3 are presented. The new states formed

from charged excitons (trions) by correlation with the surrounding electrons

are identified. These “quasiexcitons” differ from usual excitons and trions by

having fractionally charged constituents. Their binding energies and emis-

sion intensities depend on the involved trion, leading to discontinuity in

photoluminescence.

PACS numbers: 71.35.Pq, 71.35.Ji, 73.43.–f, 71.10.Pm

1. Introduction

The properties of a two-dimensional electron gas (2DEG) have been investi-
gated for three decades. Photoluminescence (PL) has been used as a probe of the
fractional quantum Hall effect (FQHE), and it revealed intriguing anomalies [1–4]
coincident with the FQHE at filling factors ν = 1/3, 2/3, or 2/5. At low concentra-
tions n, PL is dominated by emission from excitons and trions (X’s and X−’s). At
higher n, interactions in the 2DEG produce Laughlin correlations among electrons,
leading to the emergence of “composite fermions” (CFs) and to the FQHE. In or-
der to perceive the optical response of incompressible Laughlin liquid, coupling of
trions to the correlated 2DEG must be understood.

2. Model

In realistic quantum well structures, doping with donors results in an electric
field, causing separation of electron and hole layers (of up to 10 nm in wells of width
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w = 20 nm). In order to correctly estimate the overall impact of the electric field
on the structure, first we calculated the trion binding energies for a w = 20 nm
AlGaAs/GaAs well [5]. The energies were obtained by exact diagonalization of
the 2e + h system in the presence of magnetic field B perpendicular to the well.

In order to preserve the 2D translational symmetry of an infinite quantum
well in a finite-size calculation, we use Haldane spherical geometry [6]. Carriers
are confined on a sphere of radius R, with magnetic monopole 2Q < 25 (in the
units of elementary magnetic flux φ0 = hc/e) placed in the center. The magnetic
length is λ = sqrt(h̄c/eB), yielding Qλ2 = R2. The extrapolation of the results to
the plane is made by taking the limit Q →∞.

The single-particle states are the angular momentum (l,m) eigenstates called
monopole harmonics [7]. The energies fall into the (2l+1)-fold degenerate angular
momentum shells separated by the cyclotron energy h̄ωc. The quasi-2D interaction
matrix elements were integrated by taking the actual e and h lowest subband wave
functions in the z direction. The densities ρe(z) and ρh(z) were obtained self-
-consistently for different electron concentrations n and well widths w. The sample
results are shown in Fig. 1.

Fig. 1. Trion binding energies ∆ as a function of magnetic field B in an empty

w = 20 nm well (a); w = 20 nm (b) and 10 nm wells (c) doped to n = 2× 1011 cm−2.

Notwithstanding large separation between e and h layers in a wider well, the
X− remains bound, although its binding energy decreases significantly (Fig. 1b)
compared with the situation without electric field (Fig. 1a). This trion spectrum
is very similar to the spectra of ideal systems, in which the “hidden symmetry” [8]
is preserved, causing the triplet to be the only bound state, and resulting in the
existence of multiplicative states [9]. For narrower structures, however, the hidden
symmetry is broken, resulting in imbalanced e–e and e–h interactions and hence
in a stronger binding of the singlet state (which then becomes the ground state,
see Fig. 1c). The difference in the ground state in w = 10 and 20 nm structures
have vast consequences on the correlations with 2DEG and hence on quasiexcitons
emerging from the Laughlin liquid.
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3. Quasiexcitons

A trion X− submerged in a Laughlin liquid interacts with surrounding elec-
trons through Haldane e–X− pseudopotential [10], which produces Laughlin corre-
lations between electrons and trions in the lowest Landau level (LL). This can be
properly described in the CF framework [11] by attaching 2p flux quanta to each
electron or trion. All electrons converted to CFes fill the lowest LL in effective
magnetic field B∗ = B/(2p+1) at the Laughlin filling νL = (2p+1)−1. If ν > νL,
Laughlin quasiparticles will occur in the form of quasielectrons (QEs) in the ex-
cited CF–LL, each carrying effective charge −e/(2p + 1). Similarly, at ν < νL,
the quasiholes (QHs) will emerge from 2DEG, in a form of vacancies in the lowest
CF–LL, each carrying charge +e/(2p + 1). In the same way the X− in a Laughlin
liquid is converted into a CFX− carrying fractional charge −e/(2p + 1).

The CFX− is a many-body excitation, formed from a three-body X− by
unique (Laughlin) correlation of the X− with the surrounding electrons. Its “ef-
fective” (or residual) charge −ε is one (fractional) quantum of charge in a Laugh-
lin liquid. It results from fractional (only partial) screening of a charge defect
(here, X−) by the 2DEG in a high magnetic field. The CFX− will be called a
negative “quasiexciton” X−.

To search for this state in an interacting e–h liquid, we have diagonalized
several different Ne + h systems at different values of 2Q (corresponding to a
different number of QEs or QHs present in the Laughlin ν = 1/3 liquid) and
for parameters of various realistic quantum wells (different well widths w and
concentrations n). Figure 2 presents the excitation energy spectra for N = 9, with
the PL oscillator strengths τ−1 additionally marked for each state by the radius
of the open circle. Using the CF picture generalized for a two-component (e–X−)
liquid [11], we anticipate the X− ground state with L = 2 when 2Q = 20. Indeed,
this state is identified in Fig. 2.

Fig. 2. Energy E of the 9e + h system as a function of total angular momentum L in

Laughlin ν = 1/3 state, calculated on Haldane sphere at 20 ≤ 2Q ≤ 22.
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At 2Q = 21 there is one QH in addition to the X−, and the two attract each
other forming a bound, neutral (quasi)excitonic state called X . Dispersion of this
state, extracted from Fig. 2b is plotted in Fig. 3. At k = 0, the X is approximately
a multiplicative state (with a k = 0 exciton decoupled from the remaining N − 1
electrons). However, at k > 0 it builds a dipole moment d ∝ k by splitting into
fractional charge quanta of the X− and QH (rather than into e and h, as it is for
an isolated exciton). A smaller charge of the constituents is responsible for a much
shallower dispersion of the X compared to the “bare” X). The state containing an
X and an additional QE can be identified in Fig. 2a by its large τ−1. Comparison
of the energies of X + QE and X− gives the X− binding energy, ∆−.

Fig. 3. Quasiexciton dispersion (X−–QH interaction energy V as a function of wave

vector k) calculated from Fig. 2b for the Laughlin ν = 1/3 liquid.

In Fig. 2c there are two QHs besides the X− (or, alternatively, one QH in
addition to the X ). The ground state is a positive QX called X+ at L = 4. The
identification of the nearly multiplicative of X + QH state with a large τ−1 allows
one to estimate the indicated binding energy ∆+.

The interpretation of these finite-size results for an infinite system is the
following. At ν < 1/3, the X− attracts and binds a QH to become a neutral
X− + QH = X with the binding energy ∆0 = V (0) of Fig. 3. The X may capture
another QH to become a positively charged X + QH = X+, with the energy
gain ∆+. The opposite scenario happens at ν > 1/3, i.e., in the presence of QEs.
The X+ attracts a QE and, by recombination of a QE–QH pair becomes a X . The
X can also annihilate another QE to become a X−. Whether the X binds a QH or
annihilates a QE to acquire charge at ν 6= 1/3 depends on the relation between ∆0

and the sum of QE and QH energies, εQE +εQH, which can be different in different
systems. Figure 2 shows that both charged QXs are stable in a w = 20 nm well
doped to n = 2 × 1011 cm−2. The following simple relation can generally be
obtained

∆− + ∆0 = εQE + εQH. (1)
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Fig. 4. Schematic of the discontinuity of the PL energy as a function of magnetic field

around Laughlin ν = 1/3 filling due to emission from different quasiexcitons.

The main consequence of having different ground state for ν < 1/3 and
ν > 1/3 is that, if ∆− 6= ∆+, a discontinuity should occur in the PL spectrum
at ν = 1/3. Because the neutral X has a much larger oscillator strength than
either X− or X+, we expect that it can also be observed in PL despite being
an excited state, especially within the ν = 1/3 Hall plateau (when the QEs and
QHs are localized). The predicted behavior of the emission energy near ν = 1/3
is shown schematically in Fig. 4. The values of ∆− and ∆+ for our reference
system (GaAs, w = 20 nm, n = 2 × 1011 cm−2, and B = 25 T) have been
estimated by extrapolation of the results similar to those in Fig. 2 but obtained
for different values of N and 2Q to the planar limit of λ/R =

√
Q → 0. The

result is ∆− = 0.52 meV and ∆+ = 0.27 meV, in good agreement with an old (but
previously unexplained) experiment of Goldberg et al. [1] and a recent observation
of Byszewski et al. [2].

Let us stress that the three X states are in fact the same X−, only differently
screened by the 2DEG. This is shown in Fig. 5a, where the e–h pair-distribution
function g(r) of the X+ (the QX in which the trion is separated from the 2DEG

Fig. 5. (a) The e–h pair-distribution functions for quasiexciton QX+ and trion X−.

(b) The e–X− pair-distribution functions calculated as a difference between g(r) for the

appropriate quasiexciton and for the trion.
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by the maximum number of two QHs) is compared to that of an isolated trion.
In Fig. 5b we plotted differences between g(r) for all three QXs and for the trion.
This difference is the measure of the electron–trion correlations in the QX states.
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