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Spin-dependent electron transport through two quantum dots in series

attached to ferromagnetic electrodes is analyzed within the framework of

the non-equilibrium Green function formalism. Regime of a weak coupling

between the dots is investigated. I−V characteristics and tunnel magnetore-

sistance are calculated and discussed in detail.
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1. Introduction

Spin-polarized transport in nanoscopic systems was mainly investigated for
a single quantum dot (QD) attached to ferromagnetic electrodes (see e.g. [1]). It
was shown that such a set could act as a spin valve. The current flowing through
QD strongly depends on the configuration of magnetic moments in the leads.
Usually, it is maximal for configuration in which magnetic moments are parallel in
both electrodes. Spin-based devices are very important due to possibility of their
application in spintronics. Especially, double quantum dot (DQD) structures could
probably work in quantum computer hardware [2]. Electron transport through a
double dot system received much experimental and theoretical attention during
the past decade [3, 4], however, systems with non-magnetic electrodes were mainly
investigated. Recently, spin-dependent transport has been studied for a set of two
quantum dots capacitively coupled [5]. The linear conductance in the Kondo
regime has been mainly investigated.

Here, we analyze spin-dependent transport through a system of two quantum
dots in series. The inter-dot tunnel coupling can be easily tuned in such systems [6].
It strongly influences the current flowing through the system. Using the non-
-equilibrium Green function formalism based on the equation of motion we show
that the DQD set can act as an effective spin valve in which not only tunnel
magnetoresistance (TMR) value but also its sign can be easily changed with inter-
-dot coupling.
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2. Model

The system, which consists of two quantum dots in series attached to ferro-
magnetic electrodes, is described by the following Hamiltonian:

H = HL + HR + H2D + HT. (1)

The terms Hβ describe here the left (β = L) and right (β = R) electrodes in the
non-interacting quasi-particle approximation Hβ =

∑
kσ εkβσa+

kβσakβσ and εkβσ

is the single-electron energy in the β-th lead. The term H2D stands for DQD and
is assumed in the form

H2D =
∑

βσ

(Eβd+
βσdβσ + 1

2
Uβd+

βσdβσd+
β−σdβ−σ)

+VM

∑
σ

(d+
LσdRσ + h.c.). (2)

Eβ denotes here the discrete level of the dot β (β = L, R) and Uβ represents the
intra-dot electron correlation parameter. Terms describing inter-dot Coulomb in-
teractions are not taken into account in the Hamiltonian H2D. The energy Eβ

includes the electrostatic energy due to applied voltage Eβ = Eβ0 +V d
β , where V d

β

is the electrostatic potential of the β-th dot. The capacitance model allows us to
compute the electrostatic potential fully self-consistently. The following formulae
are used:

e
∑

σ

(
nLσ − n0

Lσ

)
= CL

(
VL − V d

L

)
+ CM

(
V d

L − V d
R

)
,

e
∑

σ

(
nRσ − n0

Rσ

)
= CR

(
VR − V d

R

)
+ CM

(
V d

R − V d
L

)
,

in which nβσ and n0
βσ are occupation numbers of the dot β for a given and zero

bias, respectively. CL, CR, CM describe capacitances of the left, right, and inter-
-dot tunnel barriers. The last term in the Hamiltonian H2D (Eq. (2)) describes
tunneling coupling between the two dots in series with the coupling parameter
VM. Tunneling processes between DQD and external electrodes are included in
HT (Eq. (1)). Hamiltonian HT takes the form HT =

∑
kβσ tkβσa+

kβσdβσ + h.c.,
where tkβσ denote elements of the tunneling matrix. In the following, we in-
troduce parameters Γβσ = 2π

∑
k |tkβσ|2 δ(E − εkβσ), which describe couplings

between DQD region and external electrodes. Γβσ are assumed to be constant
within the electron band and to vanish outside the band. For systems with ferro-
magnetic electrodes Γβσ depend on the spin index and polarization p of the lead
in the following way: Γβσ = Γβ(1 + σ̂p), where σ̂ = 1 for electrons with majority
spin and σ̂ = −1 for electrons with minority spin.

The non-equilibrium Green function formalism is introduced to describe elec-
tron transport in the non-linear regime. Green’s functions are calculated in the
Hartree–Fock (HF) approximation with the use of equation of motion (EOM)
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method. The procedure, which has been introduced to split higher order Green’s
functions, is justified for relatively small inter-dot coupling at temperatures higher
than the Kondo temperature. The current flowing through the β (β = L, R) junc-
tion is calculated according to a standard formula [7]:

Iβ =
ie
h̄

∫
dE

2π

∑
σ

Γβσ

[
G<

βσ + fβ(Gr
βσ −Ga

βσ)
]
, (3)

where fβ is the Fermi–Dirac distribution function in the lead β and Gi
βσ =

〈〈dβσ, d+
βσ〉〉i denotes the Fourier transform of retarded, advanced, and lesser Green

function for i = r, a, <, respectively. On the basis of HF approximation the lesser
Green function can be found from the appropriate EOM [8]. Taking into account
the calculated formula for G< one can express the current flowing in the biased
system in the form

I =
e

h̄

∫
dE

2π

∑
σ

∣∣G0
Rσ

∣∣2 |GLσ|2 V 2
MΓLσΓRσ(fL − fR). (4)

Due to relation |Gβσ|2|G0
−βσ|2 = |G−βσ|2|G0

βσ|2, which is fulfilled for the cal-
culated Green functions, the current flowing through the system is conserved,
IL = −IR and the index β was dropped. The mean occupation numbers
nβσ = 〈d+

βσdβσ〉 on the dot β can be found according to the formula

nβσ = −i
∫

dE

2π
G<

βσ =
∫

dE

2π
(Γβσfβ +

∣∣G0
−βσ

∣∣2 V 2
MΓ−βσf−β) |Gβσ|2 . (5)

In the above expressions G
r(a)
βσ corresponds to retarded (advanced) Green function

of the dot β calculated from EOM and |G0
βσ|2 = (A2

βσ + 1
4Γ 2

βσ)−1 with

Aβσ =
(E − Eβ)(E − Eβ − Uβ)
E − Eβ − Uβ(1− nβ−σ)

.

Current flowing through the system and occupation numbers are calculated in a
self-consistent way.

3. Numerical results

Electric current flowing through DQD system and number of electrons are
calculated numerically with the use of parameters: EL = ER = E0 = 4, UL =
UR = U = 8, ΓL = ΓR = Γ = 1, CL = CR = CM = 4, kT = 1. It is assumed
that energy levels in both dots are aligned for zero bias. With increasing voltage
the dot levels start to split. I−V characteristics calculated for DQD attached
to non-magnetic leads (p = 0) are very similar to the ones found by Niu and
Liu [9]. Here, we report only results obtained for systems with ferromagnetic
electrodes characterized by polarization factor p. I−V characteristics were taken
for various values of inter-dot coupling VM and polarization factor p. Two collinear
magnetic configurations, parallel (P) and antiparallel (AP) of magnetic moments
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in the electrodes were investigated. Current flowing through the system in P
configuration depends very weakly on the polarization factor. Typical curves are
presented in Fig. 1a. As a function of bias voltage the current shows two well
visible peaks. The first one appears when the level E0 enters a tunneling window,
whereas the second peak corresponds to E0 + U . Intensities of the peaks strongly
depend on the coupling parameter VM and increase with increasing VM. For the
case of two identical dots, investigated here, the current is fully symmetric for the
bias reversal. In P configuration numbers of electrons accumulated on L and R
dots do not strongly depend on the coupling parameter VM (Fig. 1b). For negative
voltages (positive eV according to the figure) number of electrons starts to increase
on the left dot. For higher bias the L dot is practically doubly occupied, whereas

Fig. 1. Bias dependence of the current (a,d), occupation numbers (b,e) and magnetic

moment induced on the dots (c,f) calculated for parallel (left part) and antiparallel

(right part) configurations of magnetic moments in the electrodes with polarization

factor p = 0.95.



Spin Polarized Transport through the Double-Dot System 889

the right one is practically empty. For positive voltages (eV < 0) the situation
is reversed. Electrons which occupy the dots are practically spin-degenerated and
only small magnetic moment is induced on each dot for highly polarized external
electrodes (see Fig. 1c). Quite different situation takes place in AP configuration.
In this case the current strongly depends on polarization factor of the leads. For
small p factor current flowing in the system does not differ essentially from the one
typical of P configuration. However, for large p it changes dramatically. Current
intensity lowers substantially with an increase in p. Moreover, two-peak structure
is now not very well visible. For high values of p and relatively strong inter-dot
coupling the current shows round and small cusp (Fig. 1d). When electrodes are
strongly polarized (p = 0.95) both dots are occupied with electrons in the small
bias region. Quite large magnetic moment is induced. But, for high bias voltages
one dot is practically doubly occupied and the other is empty. The moment tends
to zero (Figs. 1e,f).

The difference between currents flowing in P and AP configurations gives
contribution to tunnel magnetoresistance, which can be determined as

TMR =
IP − IAP

IAP
,

where IP (IAP) denotes the current in P (AP) configuration. Figure 2 presents

Fig. 2. Bias dependence of TMR calculated for indicated values of polarization factor

(a–d) and inter-dot coupling parameter.
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TMR in dependence on bias voltage for different polarization factors. In the
Coulomb blockade region (small voltages) TMR is enhanced and positive. For
voltages corresponding to the second peak in the current TMR can be negative.
This change of sign takes place only for a weak inter-dot coupling (VM = 0.5).
When VM increases, TMR strongly increases and takes positive values in the whole
bias voltage region. TMR also strongly increases with the polarization factor. For
high values of p (p = 0.95) TMR is considerably enhanced. One can see that
in systems with two quantum dots in series attached to ferromagnetic electrodes
TMR can be easily changed with inter-dot coupling. For strong VM the curves
start to represent behavior typical of TMR in one-dot system [10].
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[5] B. BuÃlka, S. Lipiński, Nonlinear Optics, Quantum Optics 30, 191 (2003).

[6] L.P. Kouwenhoven, C.M. Marcus, in: Mesoscopic Electron Transport, Eds.

L.L. Sohn, L.P. Kouwenhoven, G. Schön, Kluwer, Dordrecht 1997, p. 105.

[7] H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconduc-

tors, Springer Verlag, Berlin 1996.

[8] C. Niu, D.L. Lin, T.H. Lin, J. Phys., Condens. Matter 11, 1511 (1999).

[9] C. Niu, L. Liu, Phys. Rev. B 51, 5130 (1995).
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