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The quantum interference is considered in time-dependent magnetic

field that is quantum beats in mesoscopic loop structure. The similarities

between this effect and Josephson, scalar Aharonov–Bohm and Aharonov–

Casher effects, as well as their differences are treated and a possible ap-

plication of the effect to the construction of the device, complementary to

SQUIDs, is analysed.
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1. Introduction

In recent years a new paradigm of electronics based on the spin degree of
freedom of the electron has begun to emerge, so even the name for this new
branch of the science and technology was coined, “spintronics”. Plainly speaking,
spintronics is an attempt to substitute the electron charge by its spin in order to
use it for the variety of practical applications [1].

One of the main ideas which underpins different possible applications of “spin
transport”, including information storage and computation, is that the spins of
electrons in semiconductors may have very long quantum coherence times [2], or
in other words, electrons can travel a long way without flipping their spins. But this
also gives the possibility to observe quantum effects which involve the interference
of electron waves. The destruction of quantum coherence is controlled by the phase
relaxation time or phase relaxation length. Since for the electron spin this length
may be very long, it is naturally to expect that the spin interference can reveal itself
in the conductance oscillations similar to the ones which are due to Aharonov–
Bohm effect. Most of the researchers who dealt with the Aharonov–Bohm effect
in the solid state [3] considered mainly the Hamiltonian Ĥ = (p−(e/c)A)2/2m∗+
U(y, z), where U(y, z) is the energy corresponding to the transverse motion, and
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almost nobody takes into account the spin-part µBσ̂B of the Hamiltonian (µB is
the Bohr magneton, σ̂ is the electron spin operator, B — magnetic field). However,
if the quantum interference is concerned, the quantity of main importance is the
coherence length. If one considers the total Hamiltonian which includes Pauli
term, one can write down the electron wave function in a factorized form as a
tensor product: Ψ(r, s) = ϕ(r) ⊗ χ(s) and consider the coherence of each part
separately. As a result, it is possible to introduce two phase relaxation lengths, the
first one for the “orbital part” of the electron wave function, L

(e)
ϕ , and the second

one, L
(s)
ϕ for the spin part of the wave function. It turns out [4–6] that L

(s)
ϕ À L

(e)
ϕ

which is in total agreement with the experiment [2]. The physics which is behind
that is the following. An electron during its transfer along some path in the solid
(semiconductor, for definiteness) interacts all the time with the environment. As
a rule rigid scatters such as impurities and other defects of crystalline structure do
not contribute to the phase relaxation; only dynamical scatters like phonons do.
On the other hand, the electron scattering by phonons is mainly inelastic, while
impurity scattering is mainly elastic, so we can say that only inelastic scattering
contributes to the phase relaxation. But what does it mean inelastic scattering
in case of spin? It means spin flips caused by spin–orbit interaction accompanied
by phonon interaction, since there must be an agent which adds or subtracts the
Zeeman energy to the electron spin. This kind of interaction is very weak and that
is why the spin flips are rare events and the phase relaxation length for the spin
part of the electron wave function is very long. If the structure length L is chosen
to be L

(s)
ϕ > L > L

(e)
ϕ , it is possible to “wash out” the quantum interference

related to phase coherence of the “orbital part” of the wave function retaining
at the same time the phase coherence of the spin part one and hence, to reveal
the corresponding conductance oscillations of the microstructure. Such model
was considered in the papers [4–6], where the theory of the quantum interference
in a loop structure due to Larmor precession of electron spin in semiconductor
microstructure was presented. The aim of this paper is to attract one to another
quantum interference effect which can occur in a loop structure similar to that
considered in [4, 5] in a time-dependent magnetic field.

2. Quantum interference in time-dependent magnetic field
(quantum beats)

Whenever one deals with a physical phenomenon in which the motion of some
object can be represented as the superposition of two harmonic oscillations with
two angular frequencies ω1, ω2 which are very close to each other (ω1 ≈ ω2), one
can expect to observe the beats. That is, the resulting almost harmonic oscillation
occurs at the frequency ω̄ = (1/2)(ω1+ω2) and with the slowly varying amplitude,
A(t) ∼ cos(ωmodt), where ωmod = (1/2)|ω1 − ω2|.

Quantum beats are usually associated with coherence-sensitive experimen-
tal methods, such as four-wave mixing, photon echoes, coherent Raman scattering,



Josephson-Like Effect in Mesoscopic Loop Structures 819

and resonance fluorescence. When two nondegenerate states are coherently driven
by an optical field, the induced polarizations in the medium interfere and give rise
to a beating in the difference between the energies of these states. In semicon-
ductors, the continuous density of states results in a rapid decay of the coherence
of the induced polarization. The aim of this work is to treat the influence of
time-dependent magnetic field on the spin coherent transport in a loop structure,
to point out the possibility to get quantum beats somewhat different from those
reported earlier [7–9] and to stress its amazing similarity to Josephson effect in
superconductors.

Let us consider the loop structure similar to that one of Ref. [4, 6]. The
main difference however now is that an external magnetic field is time dependent
and its amplitude is supposed to be somewhat different in the channels 1 and 2
(Fig. 1).

Fig. 1. A sketch of a two-channel semiconductor mesoscopic structure in external time-

dependent magnetic fields of different amplitudes accross the channels.

Suppose the Hamiltonian of an electron is (see also [10]): H(t) =
H0(t)⊗ I0 + H1(t)⊗ I1, where

H0 = (1/2)m∗(p− (e/c)A(t))2 + U(r), H1 = −µBσ̂ ·B(t). (1)

Here I0, I1 are the unit operators acting in the state spaces of H0 and H1, respec-
tively, m∗ is the electron effective mass, A is the vector potential corresponding
to the magnetic field B, µB and σ̂ are Bohr magneton and the spin operator,
respectively. We also assume that U(r) describes conduction bands bending due
to space charge and discontinuities of any band. Since H0 does not depend on
spin, the wave function is the tensor product: Ψ(r, t, s) = ϕ(r, t) ⊗ χ(s, t). Ever
since for convenience we shall refer to ϕ(r, t) as the “orbital part” of the total
wave function, keeping in mind that it corresponds to H0 describing the charge-
field interaction, and we shall refer to χ(s, t) as the spin-part of the wave function
related to H1, the spin part of the Hamiltonian (1).

Assume the characteristic time scale of magnetic field changing is much
longer than all characteristic electron scattering times, spin relaxation time in-
cluding, then the main results of Refs. [4, 6] are applicable to this particular case
of time-dependent magnetic field.
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Indeed, introducing the factorized form of the wave function as the tensor
product of orbital and spin parts, one not only can, but rather have to introduce
simultaneously two phase relaxation lengths, the first one for the “orbital part”
of the electron wave function, L

(e)
ϕ , and the second one, L

(s)
ϕ for the spin part. As

we already mentioned in the Introduction, it turns out [4, 6] that L
(s)
ϕ À L

(e)
ϕ ,

which is in total agreement with the experiment [2]. As a rule rigid scatterers
such as impurities and other defects of crystalline structure, do not contribute to
the phase relaxation, but inelastic interactions may and in general do destroy the
phase coherence of the wave function. In the papers [4, 6] we have considered
different mechanisms of spin decoherence and shown that indeed L

(s)
ϕ À L

(e)
ϕ .

Let us consider now the non-relativistic motion of an electron with the spin
|s| = 1/2 in a loop structure of Fig. 1, where the magnetic fields in the two
arms of the structure are: B1 = B01 cos ωt and B2 = B02 cosωt. In accordance
with general quantum mechanical approach (see, for instance, Aharonov–Bohm
phase description given by Feynman [11]), time-dependent phase of precessing
spin (actually, the Larmor rotating angle around the field B) can be introduced as
follows:

θ(t) = (µBg/h̄)
∫ t

0

B(t′)dt′. (2)

Here we again suppose the majority of electrons to be at the Fermi surface and to
have the velocity equal to the Fermi velocity vF.

Then using the technique described in Refs. [4, 6] one can calculate the
current through the structure, which is equal to

I = (2e/h) K(A + D cos(∆θ(t))), (3)

where K, A,D are the coefficients dependent on the peculiarities of the structure.
The phase shift ∆θ(t) acquired by the spin wave function of an electron moving
through the structure, is

∆θ(t) = (µBg∆B/h̄ω) sin(ωt), (4)

where ∆B = B01 −B02.
Figure 2 represents the current through the loop structure plotted according

to the formulae (3, 4) for different semiconductors and some chosen values of ∆B

and ω; we also assumed A ∼ D. It is clearly seen that in all cases the curves
representing current versus time consist of a spire-like pieces separated by rather
more slow undulations. Obviously, spire-like pieces correspond to relatively great
values of the prefactor (µBg∆B/h̄ω) in (4) and the values of sinωt which are
very close to unity, while relatively slow undulations correspond to those values of
sinωt which are very nearly to zero. Therefore, if one would measure the current
through the structure in question by means of the device with relatively rough
time resolution, this fine spire-like structure would be smeared out and one could
observe only that current undulates up and down from its average value almost
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Fig. 2. Quantum beats in mesoscopic loop structure due to spin coherent transport

and Larmor precession. Three pictures represent current through the structure versus

time for three different semiconductors. The parameters chosen for the calculations are:

InSb — |g| = 50.7, ω = 50 Hz; InAs — |g| = 15.3, ω = 15 Hz; GaAs — |g| = 0.50,

ω = 0.5 Hz; ∆B = 10−5 Gs throughout.

periodically. From Fig. 2 one can easily estimate this periodicity: if one has the
device which can probe the current with time resolution ∼ 0.01 s, then the period
of undulations for InSb would be about 0.06 s, for InAs — 0.05 s and for GaAs
— about 6 s (notice that ∆B in all cases is supposed to be the same, while ω is
chosen to be different in order to “compensate” the difference in Lande factor g

for these three materials).
It is especially easy to grasp what is going on, if one suppose that ω, the

frequency of magnetic field oscillations, is so small that the condition ωt ¿ 1 is
fulfilled. Then, from (3), (4) we have

I ∝ [A + D cos((µBg∆B/h̄)t)] . (5)

It is clear that since the factor ω0 = µBg∆B/h̄ in the last expression, gener-
ally speaking, is large enough (for example, if ∆B ∼ 1 T, ω0 ∼ 4.4× 1010 Hz), on
average the current through the structure is very nearly to some constant. How-
ever, if ∆B becomes very small, say, 10−5−10−6 Gs, the period T = 2π/ω0 of
oscillations in (3) becomes equal to 0.14–1.4 s and this yields the possibility to
observe current modulation.

Thus, the current through the structure should oscillate without any appar-
ent change in the structure and this kind of oscillations can also be called quantum
beats. These beats are very similar to the Josephson effect. Indeed, in this case
the phase difference ∆θ(t) is driven by the magnetic field (see (4), (5) which is
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analogous to the Josephson effect in superconducting tunnel junctions, where the
phase of Cooper pairs in two superconductors separated by the insulator film
(so-called weak link) is related according to ∆θ(t) = (2eV/h̄)t, where V is the
voltage applied to the junction and the superconducting Josephson current of

IS = ISmax sin ∆θ(t).

Let us analize an amazing similarity of these two effects more thoroughly.
Indeed, while the phase difference of Cooper pairs in Josephson junction driven by
an applied voltage is equal ∆θ(t) = 2eV t/h̄, the phase difference of the electrons
spin wave function, acquired during electron transport through the channels of the
loop structure driven by magnetic field, is equal to ∆θ(t) = µBg∆Bt/h̄. The effect
discussed here differs, however, from Josephson one in some important respect. In
order to grasp it, let us look at the effect discussed in the paper, from another point
of view. Namely, from the point of view of its possible applications to measure
extremely small magnetic fields deviations from the spatial uniformity.

It is well known that superconducting quantum interference devices
(SQUIDs) operating at 4 K have been unchallenged as ultrahigh, sensitivity mag-
netic field detectors [12]. They have enabled, for instance, biomagnetic imaging,
such as mapping of the heart activity, mapping of the magnetic fields produced
by the brain and so on. Since the current through the single SQUID (that is, two
Josephson junctions in parallel, making a superconducting loop) is proportional to
cos |2eΦ/h̄|, where Φ is the magnetic flux threading the superconducting loop, one
has, in order to enhance sensitivity of the device, to increase the flux and hence,
the area of the loop. To this end one has to put a set of 10, 20 or even more Joseph-
son junctions close together and equally spaced. Note that 2eΦ/h̄ is nothing else
but Aharonov–Bohm phase acquired by Cooper pairs during their transport along
the superconducting loop. Now it is clear in what respect the effect discussed in
the paper differs from Aharonov–Bohm one. The phase difference acquired by the
electron spins does not depend on the flux threading the loop, but does depend on
the magnetic field difference in the channels 1 and 2. It means that this effect per-
haps could be used for constructing the devices complementary to SQUIDs in that
respect that they could enable us to measure the slightest magnetic field deviations
from the spatial uniformity in extremely small scale. How small the measuring
area could be, one can estimate in a following way. In order to satisfy the condi-
tion L

(s)
ϕ > L > L

(e)
ϕ , it is sufficient to get L ∼ 1.5× 10−2 cm, while the distance

between the channels 1 and 2 could be about 4.0 × 10−6 cm with the width of
the channel of about 1.0× 10−6 cm each. Then the measuring area can be about
9.0 × 10−8 cm2; compare this value with the millimeter-scale spatial resolution
of the SQUIDs or even with a somewhat smaller spatial resolution of a recently
reported subfemtotesla atomic magnetometer [13]. The sensitivity of the device,
based on the effect discussed here, can be estimated as to be 10−11 THz−1/2, while
its operating temperature could be about 40 K or even more. Indeed, since in the
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formula (1) A ∼ D, the “contrast” of the “interference pattern” is determined
only by the ratio

√
(EF − kBT )/EF which at a temperature of about 40 K is of

the order of 90%.
It is also instructive to compare the effect discussed in the paper, with

other cyclic phenomena such as scalar Aharonov–Bohm (SAB) [14] and Aharonov–
Casher (AC) [15] effects.

It is well known that in the Aharonov–Bohm (AB) effect a charge moving
around magnetic flux filament in a region with vanishing electromagnetic fields,
accumulates the phase shift. This is due to gauge invariant coupling between
the current and electromagnetic vector potential and for that reason, the locally

accumulated phase is not gauge invariant. Therefore, AB effect is sometimes
termed as being nonlocal. On the other hand, in SAB effect, as it was argued by
Peshkin [14] and in AC effect, as it was shown in [16], the magnetic moment of
a neutral particle couples directly to the field strenghts, either B (as in case of
SAB) or to E, as in case of AS.

The effect discussed here is very similar to SAB and AC, because it is also
brought about by an ordinary action of the Maxwell field and hence, has the
properties of all other local interactions. The AB effect is nonlocal because the
electron experiences no force and exchanges no momentum, energy or angular
momentum with the electromagnetic field. In our case, just like in case of SAB
and AC, the Hamiltonian and the equation of motion involve contemporaneous
Maxwell field in the domain of the electron’s position; thus, the effect is not
entirely topological in character. The main difference between this effect and SAB
and AC is that the former deals with charged particles (electrons) in semiconductor
and could be observable only under special conditions, when the “phase memory”
related to the orbital part of the wave function is “washed out”, while the phase
coherence of the spin part of the wave function remains intact. Thus, this spin
coherence can reveal itself in corresponding spin current oscillations.

3. Conclusion

A simple theory of the quantum interference phenomenon, quantum beats
which are due to Larmor precession of spins in mesoscopic loop structure, is pre-
sented. We have shown that if the amplitudes of magnetic fields in the channel 1
and 2 of the loop structure are a little bit different, say ∆B ∼ 10−5−10−6 Gs, the
quantum beats can occur in the structure which are the spin current modulation
with a period of about 0.14–1.4 s.

The similarities, as well as differences between the quantum beats in a loop
structure and Josephson effect are also discussed in the paper. It is worthy to
stress that the effect considered in this work could be used for developing the
device complementary to SQUIDs, devices which are also used for measuring small
magnetic fields.
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Small electric currents which occur in a human body are the sources of time-
-dependent magnetic fields whose amplitudes vary from few fT (such fields are
generated by human brain) to 50000 fT (fields generated due to heart activity).
Measuring small magnetic fields are extremely important in biomagnetic imaging
and medical diagnostics where the use of the SQUIDs enables us to localize the
sources of epilepsy with the accuracy of a few mm. The use of the hypotetical
device proposed in the paper could perhaps reduce the measuring area to 1.5 ×
10−2 cm× 5× 10−6 cm. This is because in order to enhance the sensitivity of the
device like SQUID; one has to enhance the measuring area in order to make the
magnetic flux threading the SQUID-loop greater, while sensitivity of the device,
proposed in the paper, does not depend on the magnetic flux.
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