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Using the self-consistent Hartree–Fock approximation for spinless elec-

trons at zero temperature, we calculate the persistent current of the inter-

acting electron gas in a one-dimensional ring containing a single δ barrier.

Our results agree with correlated models like the Luttinger liquid model and

lattice model with nearest-neighbor interaction. The persistent current is a

sine-like function of magnetic flux. It decays with the ring length (L) faster

than L−1 and eventually like L−α−1, where α > 0 is universal.

PACS numbers: 73.23.–b, 73.61.Ey

Introduction

Electrons in a quantum wire form a one-dimensional (1D) electron gas. By
tying the wire ends to each other one forms a 1D ring. The ring is called “meso-
scopic” if its circumference is shorter than the electron coherence length. Magnetic
flux applied through the opening of such ring gives rise to an equilibrium persistent
current [1]. Measurements of persistent currents are not yet fully understood due
to the complicated role of the electron–electron (e–e) interaction and disorder [1].
Here we study the persistent current of interacting spinless electrons in a 1D ring
with a single scatterer. Let us review this simplified problem.

For non-interacting electrons the persistent current (I) as a function of the
magnetic flux (φ) and ring circumference (L) can be derived for an arbitrary
scatterer [2]. For even number of electrons (N) assumed in our paper, the result
relation

I =
evF

πL

arccos(|t̃kF | cos(φ′ − π))√
1− |t̃kF |2 cos2(φ′)

|t̃kF | sin(φ′), φ′ ≡ 2πφ/φ0, (1)

where φ0 = h/e is the flux quantum, t̃kF is the electron transmission amplitude
through the bare scatterer, and kF is the Fermi wave vector. For small t̃kF
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I =
evF

2L
|t̃kF | sin(φ′). (2)

For a repulsive e–e interaction in the continuous ring, the spinless persistent cur-
rent can still be derived analytically in the Luttinger liquid model [2]. For L →∞

I ∝ L−α−1 sin(φ′), (3)

where the power α > 0 is universal, depending only on the e–e interaction. Fi-
nally, the authors of Ref. [3] obtained the persistent current for interacting spinless
electrons by solving the lattice model with nearest-neighbor hopping and interac-
tion. Using the renormalization group (RG), they confirmed for a 1D ring with a
single scatterer the existance of the current which decays faster than 1/L and is a
sine-like function of φ. They found I ∝ L−α−1 sin(2πφ/φ0) for long chains and/or
strong scatterers.

Here we find similar results within the Hartree–Fock model. Using the self-
-consistent Hartree–Fock approximation at zero temperature, we study the persis-
tent current of the interacting spinless electron gas in a continuous 1D ring with a
single δ barrier. Our results are in good accord with the Luttinger liquid model [2]
and RG model [3]. We demonstrate I ∝ L−α−1 sin(2πφ/φ0) for strong scatterers.

2. Theoretical model

We consider N interacting 1D electrons with free motion along a circular
ring threaded by magnetic flux φ = BS = AL, where S is the area of the ring,
B is the magnetic field (constant and perpendicular to the ring area), and A is
the magnitude of the resulting vector potential (circulating along the ring circum-
ference). In the Hartree–Fock approximation the many-body electron state is the
Slater determinant of single-electron wave functions ψk(x), where k is the elec-
tron wave vector. These wave functions can be found by solving the Hartree–Fock
equation

[
h̄2

2m

(
−i

∂

∂x
+

2π

L

φ

φ0

)2

+ γδ(x) + UH(x) + UF(k, x)

]
ψk(x) = εkψk(x) (4)

with boundary condition ψk(x + L) = ψk(x), where m is the electron effective
mass, x is the electron coordinate along the ring, γδ(x) is the potential of the
scatterer,

UH(x) =
∑

k′

∫
dx′V (x− x′)|ψk′(x′)|2 (5)

is the Hartree potential,

UF(k, x) = − 1
ψk(x)

∑

k′

∫
dx′V (x− x′)ψk(x′)ψ∗k′(x

′)ψk′(x) (6)
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is the Fock nonlocal exchange potential, and V (x − x′) is the e–e interaction. In
Eqs. (5) and (6) we sum over all occupied states k′ up to the Fermi energy.

In the groundstate the persistent current is given by

I = − ∂

∂φ
E0(φ), E0 =

∑

k

[
εk − 1

2
〈ψk|UH(x) + UF(k, x)|ψk

]
, (7)

where E0 is the eigenenergy of the groundstate (expressed in the Hartree–Fock
approximation). Following Ref. [4], we simplify Eq. (6) as

UF(x) ' −
∑

k′

∫
dx′V (x− x′)Re[ψ∗k′(x

′)ψk′(x)] (8)

by noticing that
∑

k′ ψ
∗
k′(x

′)ψk′(x) ' δ(x − x′). This “almost-closure relation” is
a very good approximation, as shown in Ref. [4]. Applying the “almost-closure
relation” and Eqs. (7) and (8) we obtain

I = −
∑

k

[
∂εk

∂φ
−

〈
ψk

∣∣∣∣
∂

∂φ
(UH + UF)

∣∣∣∣ ψk

〉]
. (9)

Approximation (8) saves computational time and allows us to study long rings.
We solve Eq. (4) self-consistently by means of the method described in

detail elsewhere [5]. The output of the method are the single-particle states ψk(x)
and εk, the Hartree–Fock potential UH(x) + UF(x), and eventually the persistent
current (9). Below we present numerical results for the GaAs ring with electron
density n = 5× 107 m−1, effective mass m = 0.067m0, and e–e interaction

V (x− x′) = V0 exp(−|x− x′|/d), (10)

where V0 = 34 meV and d = 3 nm. We adopt the finite-ranged interaction (10)
because we want to compare it with the correlated models which also rely on the
e–e interaction of finite range. Interaction (10) is a reasonably chosen screened
interaction, used to study the many-body 1D models [6].

3. Results

The transmission and reflection amplitudes of the δ barrier are t̃k = k/(k+iζ)
and r̃k = −iζ/(k + iζ), where ζ = γm/h̄2. Since kF and m are fixed, instead of
using γ we parametrize the δ barrier by its transmission coefficient |t̃kF |2.

In panel a of Fig. 1 we show the persistent current LI(φ′) calculated by our
self-consistent Hartree–Fock approach, in panel b we show the RG result of Ref. [3]
in terms of NI(φ′). All LI data are normalized by evF/2. The ring of Ref. [3] is
a tight-binding lattice at half-filling, so we cannot expect quantitative agreement.
We see excellent qualitative agreement. In both cases the e–e interaction preserves
the sine-like dependence on φ′ and the current decays faster than 1/L. The authors
of Ref. [3] also performed the (non-self-consistent) Hartree–Fock calculation. The
calculation is shown in panel c. It fails to fit the sine-like shape.
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Fig. 1. Panel a shows the persistent current LI(φ), calculated by our self-consistent

Hartree–Fock approach for |t̃kF |2 = 0.64 and various L. For qualitative comparison,

panels b and c show the data from Fig. 3 of Ref. [3]. These data were obtained [3]

for a ring-shaped lattice model with the same |t̃kF |2 and same N as in panel a, where

N = 32, 64, . . . for L = 0.64 µm, 1.28 µm, . . .. Panel b shows the results of the RG

solution with correlations included. Panel c shows the results of the (non-self-consistent)

Hartree–Fock solution.

Fig. 2. Persistent current LI(φ′) for |t̃kF |2 = 0.03 and various L. Panel a shows our

Hartree–Fock data, panel b the Luttinger liquid scaling (see the text).

In Fig. 2 we present the persistent current LI(φ′) for the δ barrier as strong
as |t̃kF |2 = 0.03. Our self-consistent Hartree–Fock results are shown in panel a.
We want to compare these results with the scaling law due to the Luttinger liquid
model (Eq. (3)). To evaluate the scaling law (3), we reformulate it as follows [2].
We replace the bare transmission amplitude t̃kF in the non-interacting scaling
law (2) by the transmission amplitude of the interacting electron gas [7],

tkF =
t̃kF(d/L)α

√
|r̃kF |2 + |t̃kF |2(d/L)2α

' t̃kF

|r̃kF |
(d/L)α, (11)
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where d is the range of the e–e interaction V (x−x′) and the right hand side of (11)
holds for small t̃kF and/or large L. For small t̃kF one indeed obtains the scaling

I = ωL−α−1 sin(φ′), (12)

where ω = evF|t̃kF |dα/2|r̃kF |. The formula (11) was derived [7] by the RG method
in the limit of weak e–e interaction (α ¿ 1). In this limit α is given by [7]

α =
V (0)− V (2kF)

2πh̄vF
, (13)

where V (q) is the Fourier transform of the e–e interaction V (x− x′). The Fourier
transform of our interaction (10) reads V (q) = 2V0d/(1 + q2d2). We set this
formula and our parameters into Eq. (13). We obtain α = 0.0855. We evaluate
the formula (12) in panel b of Fig. 2. Clearly, this formula and the Hartree–Fock
result of panel a are in excellent qualitative and good quantitative agreement.

The left panel of Fig. 3 shows the persistent current LI(φ′ = π/2) as a
function of L for various δ barriers. Our Hartree–Fock results are shown by open
symbols connected by dashed lines. The full lines in the left panel show the scaling

Fig. 3. Persistent current LI(φ′ = π/2) as a function of L for various δ barriers (panel a)

and various e–e interaction strengths α (panel b). Our Hartree–Fock results are shown

by open symbols connected by dashed lines. The full lines show the scaling law (12) with

the power α given by Eq. (13) and with the prefactor ω adjusted to fit the Hartree–

Fock data quantitatively. The powers α = 0.0277, 0.0561, and 0.0855 correspond to

V0 = 11 meV, 22.3 meV, and 34 meV, respectively, with d fixed to 3 nm. If we adjust

the same α for some other choice of V0 and d, our results remain unchanged.

law (12) with the power α = 0.0855 obtained from the universal formula (13) and
with the factor ω adjusted to fit the open symbols quantitatively. We see that the
Hartree–Fock data reproduce the universal law I ∝ L−α−1 in the limit of small t̃kF .
The power law (12) is asymptotic and does not work for large t̃kF . Eventually, for
small enough t̃kF our Hartree–Fock data always follow the scaling law I ∝ L−α−1.
This is demonstrated in the right panel for various α and small t̃kF .



800 R. Németh, M. Moško

Finally, we discuss the Hartree–Fock potential UH(x)+UF(x) normalized as

UHF(y) = (d/L)α[UH(y) + UF(y)]/∆L, y = x/L, ∆L = πh̄vF/L. (14)

In absence of the δ barrier, the potentials UH(x) and UF(x) are x-independent
constants which we set to zero as they only imply a constant energy shift. The δ

barrier induces the Friedel oscillations of UH(x) and UF(x) around this zero mean.

Fig. 4. Self-consistent Hartree–Fock potential UHF(x/L) along a 1D ring, induced by

the (not shown) δ barrier at x = 0. The δ barrier is adjusted to have the transmission

|t̃kF |2 = 0.005 at the Fermi level (14 meV). The ring is threaded by magnetic flux

φ = 0.25φ0, the ring length, L, is varied as a parameter. The bottom panel shows just

the maxima of the Friedel oscillations.

In Fig. 4 we show the typical self-consistent UHF(y) in the ring with a strong
scatterer at y = 0. The potential exhibits Friedel oscillations with period λF/2L.
The bare scatterer is thus “dressed” by an extra scatterer due to the Friedel
oscillations. This is why we see the persistent current to decay faster than 1/L. It
is more difficult to understand why we see just LI ∝ (d/L)α. As L increases, the
Friedel oscillations in Fig. 4 are too dense to be distinguishable, but we can observe
asymptotic decay of their amplitudes. Notice that the “envelope” of the oscillation
amplitude of UHF(y) is the same for all L. Indeed, as shown in the bottom panel,
maxima of the Friedel oscillations scale for all L to a single curve. Notice also
(c.f. Eq. (14) that UHF(y) involves the scaling factor (d/L)α. This might be the
reason why LI ∝ (d/L)α, but we have so far not found a clear interpretation.

4. Conclusions

In conclusion, using the self-consistent Hartree–Fock approximation at zero
temperature, we have calculated the persistent current of the weakly-interacting
spinless electron gas in a 1D ring with a single δ barrier. Our results systematically
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agree with correlated models like the Luttinger liquid model [2] and RG model [3].
For strong δ barriers we reproduce the scaling law I ∝ L−α−1 sin(2πφ/φ0). These
non-trivial findings show that the self-consistent Hartree–Fock approximation is
reliable in this context, and the approximation (8) as well.
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