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The electronic structure and quantum conductance of rotationally in-

variant (6,6)/(12,0) and rotationally non-invariant (5,5)/(8,2) superlattices

made of metallic carbon nanotubes are investigated. It is shown that, except

in the limit of very large periods, the quantum conductance of such super-

lattices does not critically depend on their rotational invariance, although it

does in case of quantum dots and single junctions made of these nanotubes.
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1. Introduction

Carbon nanotubes (CN) are one of the most promising candidates for a new
kind of nanoelectronics. Their potential applicability in building of carbon-based
nanodevices has been demonstrated by the construction of rectifying diodes [1],
field-effect transistors [2], or carbon nanotube conducting networks [3]. In some of
these applications one has to connect two or more different carbon nanotubes.
Such connections (junctions) are most naturally realized by introducing pen-
tagon/heptagon defects at the interfaces between the nanotubes. In some cases the
interface can preserve rotational symmetries of the joined tubes; we will call it rota-
tionally invariant (RI) junction. Such junctions can reveal conductance gaps, even
if the constituent tubes are metallic [4]. Recently, we have shown [5] that a rota-
tionally invariant quantum dot (RIQD) made by sandwiching a short portion of one
metallic CN between two other metallic nanotubes, namely (12,0)/N(6,6)/(12,0)
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(where N denotes the number of CN unit cells), presents a series of localized non-
conducting states appearing in a wide conductance gap. In contrast, rotationally
non-invariant (RNI) metallic quantum dots, like e.g., (8,2)/N(5,5)/(8,2), show a
conductance gap with a series of narrow but conducting resonances [5]. Further-
more, we have recently shown [6] that in metallic carbon nanotube superlattices
(SLs) made of a periodic sequence of RIQD, some of the above-mentioned local-
ized states yield delocalized minibands, giving rise to a non-zero conductance. All
these results indicate that the transport features of nanosystems built of carbon
nanotubes strongly depend on the junction symmetry and structural details of the
constituent tubes.

In this paper we perform a study of the electronic structure and transport
properties of two different superlattices built of metallic carbon nanotubes: ro-
tationally invariant (RI) and rotationally non-invariant (RNI) superlattices. In
particular, we study N(6, 6)/N(12, 0) and N(5, 5)/N(8, 2) superlattices. We cal-
culate the miniband structures, densities of states, and quantum conductances of
these systems. We show that, unlike the single junction or quantum dots, the con-
ductance of carbon nanotube superlattices built of short fragments of nanotubes
does not critically depend on their rotational invariance.

2. Theory

We work in a tight-binding model with one π-orbital per atom. The nearest-
-neighbour hopping parameter is fixed to Vppπ = t = −2.66 eV and second-
neighbour interactions are neglected. The electronic structure and transport
around the Fermi level, EF, are well described by the π-orbital model [7]. Curva-
ture effects are not addressed, since they are negligible for the nanotubes consid-
ered here.

There are 56 atoms in the (8,2) unit cell and 20 atoms in the (5,5) unit
cell. The unit cell of (12,0) contains 48 atoms and the unit cell of (6,6) contains
24 atoms. Usually, CN unit cells are defined as uniform strips perpendicular to
the nanotube axis [8], no matter whether the CN is chiral or not. But, when
choosing a unit cell for a chiral tube with the purpose of designing a junction
between two different tubes, it is often necessary to redefine it in order to assure
that the junction only contains pentagons, heptagons, and hexagons. Obviously,
there are multiple possible choices for the unit cell, yielding in general a variety of
junctions between two tubes. In fact, the resulting junction may have a different
number of pentagon/heptagon defects or just a different arrangement of these.
This is what happens to the (8,2) unit cell in the (8,2)/(5,5) junction, and in fact,
the properties of the N(8, 2)/N(5, 5) superlattice may slightly vary depending on
the choice of (8,2) unit cell. The junctions appearing in two kinds of superlattices
investigated in this paper are presented in Fig. 1. In the case of N(6, 6)/N(12, 0)
SL, the junction consists of 6 pentagon/heptagon pairs, and thus the superlattice
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Fig. 1. Schematic (planar) view of the junctions in a rotationally invariant (6,6)/(12,0)

superlattice (top) and in a rotationally non-invariant (5,5)/(8,2) superlattice (bottom).

Open circles mark atoms of (6,6) and (5,5) unit cells.

is invariant under 2π/6 rotations. In the case of the N(8, 2)/N(5, 5) superlattice,
the junction is built of a sequence of (6,6,5,7,5,7,6,6,5,7) rings. The (8,2) sections
and the interface rings make this SL non-rotationally invariant.

The miniband structure for the investigated superlattices is calculated by
diagonalization of the Hamiltonian matrix for the k values in the first Brillouin
zone. Next, the density of states (DOS)ρ(E) is calculated as a histogram counting
the number of k-states in a given interval [E, E + ∆E]. The quantum conduc-
tance is calculated assuming that each non-degenerate miniband contributes with
a conductance of 2e2/h.

3. Results

The energy structure of any N(n,m)/M(n′, m′) superlattice consists of a
series of minibands. The minibands are formed in the following way: In any finite
section containing N unit cells of a given nanotube (n,m), the bands En(k) of
this tube are quantized into a series of discrete localized states Ei

n, i = 1, 2, . . ..
These discrete states of the same energy Ei

n, localized in different N(n,m) sections,
form the minibands Ei

n(k), since they can couple through the finite neighbouring
sections M(n′,m′). However, the energy structure of the finite adjacent section
also consists of a series of discrete states Ẽj

n′ . Thus, the discrete energy levels Ei
n

can lie in the energy gaps of the neighbouring sections and therefore the coupling
is through an energy gap (energy barrier) in such a case. If N and M are large, the
coupling is weak and the minibands very narrow. However, if N and M are small,
the coupling increases and the minibands get wider. It is also possible that two
minibands Ei

n and Ẽj
n′ , originating from discrete states that belong to different
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nanotubes, overlap. In this case, if (i) the superlattice is of RNI-type or (ii) it is
of the RI-type and the bands, En(k) and Ẽn′(k), have the same discrete angular
momenta, the confinement of discrete states in the SL sections is due to wave
vector mismatch, and the coupling has a resonant nature [5]. It can also happen
that (iii) the superlattice is of the RI-type and the bands En(k) and Ẽn′(k) have
different discrete angular momenta; in this case, the coupling takes place through
this symmetry barrier. Finally, some additional minibands can originate from the
interface states [6].

The cases investigated in this paper cover the above-mentioned possibili-
ties. Two RISL examples, namely 1(6, 6)/1(12, 0) and 2(6, 6)/2(12, 0), are shown
in Fig. 2. In the first one, the CN sections are reduced to single unit cells and
thus the minibands are extremely wide, while in the second case, the minibands
are narrower, since the CN sections are twice longer. Closer inspection of the
wave functions at k = 0 allows us to recognize the origin of the minibands and
the discrete rotation under which they are invariant. Minibands originating from
quantized bands of (6,6) and (12,0) are denoted as B and X respectively; mini-
bands originating from interface states are marked as I. The number n added
to these letters means invariance under Cn = 2π/n rotation. As a reference, we
give in the two bottom panels of Fig. 2 the band structure of the two constituent
tubes, indicating the symmetry of the more relevant bands. This allows us to trace
back the origin of the SL minibands. Thus, B6 indicates that the corresponding
band is invariant under C6; for a (6,6) tube, this means completely symmetric

Fig. 2. From top to bottom: miniband structure of 1(6,6)/1(12,0) SL; miniband

structure of 2(6,6)/2(12,0) SL; band structure of (12,0) CN; band structure of (6,6) CN.

Only bands around EF are shown. B marks minibands originating from the (6,6) tube,

X marks minibands originating from the (12,0) tube, I marks interface minibands, and

A marks dispersionless bands. The number n added to the letters means invariance

under 2π/n rotation.
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wave functions. The interface states I1 have no rotational symmetry, i.e., they are
only invariant under rotations of 2π. Notice that, although the (12,0) tube has
C4-invariant states, this symmetry is no longer present in the SL, so the minibands
originating from the X4 bands have their symmetry lowered to C2, as can be seen
in Fig. 2. As the discrete angular momenta of the (12,0) and (6,6) bands close to
EF are different, the miniband coupling takes place through a symmetry barrier.
This also applies to the coupling of interface states.

Let us now consider the density of states of several rotationally invariant
N(6, 6)/M(12, 0) superlattices. We have recently [6] studied the properties of such
superlattices for some particular values of N and M . The miniband structure of
any N(n, n)/M(2n, 0) SL always contains 2(N + 1) dispersionless (DL) bands.
Two of them have energies ±t and are doubly degenerate. Another 2N DL bands
are non-degenerate and their energies only depend on the lengths of the N(n, n)
section. A curiosity about DL bands is that the corresponding wave functions are
exclusively localized in the N(n, n) sections and pentagon/heptagon interfaces,
although they originate from the dispersionless bands of the (2n, 0) nanotube [6].
In Fig. 2 they are marked as A.

Figure 3 shows a sequence of the DOS for several RISL, N(6, 6)/N(12, 0) with
N = 1, 2, 3, 4. The DOS is presented only in the range ED = (−1.7,+1.7) eV
around the Fermi level, which is set equal to zero in the π-electron approximation.
For the shortest SL, i.e., for N = 1, one expects a strong quantization of the
bands of (12,0) and (6,6) nanotubes and a large separation of the discrete energy
levels. However, strong coupling through the single unit cell of the contiguous
sections leads to wide and overlapping minibands (see Fig. 2) that cover all the

Fig. 3. Density of states for several N(6, 6)/N(12, 0) SL; N = 1, 2, 3, 4 from top to

bottom.
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investigated energy range. As a consequence, there is no energy gap, so that
no conductance gap appears (see Fig. 4). When N increases, the minibands get
narrower and the energy gaps open up. It is interesting to note that when N

increases, the contribution of the miniband continua to the investigated energy
range ED decreases. In the case of very large N , ED is densely covered by δ-like
minibands originating from the bands of the (12,0) and (6,6) tubes, which have
different discrete angular momenta. It has a direct consequence on the quantum
conductance, since for increasing N the narrowing minibands do not practically
yield any non-zero conductance. This effect is shown in Fig. 4.

Fig. 4. Conductance of superlattices shown in Fig. 3.

Fig. 5. Density of states for several N(5, 5)/N(8, 2) SLs; N = 1, 2, 3, 4 from top to

bottom.



Band Structure and Quantum Conductance . . . 703

Let us now consider a RNISL made of two metallic nanotubes:
N(5, 5)/N(8, 2). In this case, the coupling of discretized bands through the neigh-
bouring sections and subsequent formation of minibands is only due to energy
barrier or wave vector mismatch. For small N (N = 2, 3, 4) there is no sub-
stantial difference between the DOS of this SL shown in Fig. 5 and that of the
corresponding RISL (Fig. 3), except for the energy gaps, which already appear for
N = 1. In both cases the DOS has a structure of narrow minibands separated by
minigaps. The conductance, shown in Fig. 6, is also similar in both cases. This is
an intriguing observation, since significant differences in the quantum conductance
of RI and RNI systems have been reported for both, the quantum dots and single
junctions built of metallic nanotubes.

Fig. 6. Conductance of superlattices shown in Fig. 5.

However, when N increases the investigated energy range becomes densely
covered by minibands that originate from the bands of the (8,2) and (5,5) tubes,
for which no symmetry restriction exists. In the limiting case of N →∞, all these
conducting minibands form a conducting continuum.

4. Conclusions

In summary, we have investigated the electronic structure and quantum
conductance of two types of superlattices built of metallic carbon nanotubes:
N(6, 6)/N(12, 0) and N(5, 5)/N(8, 2). The main difference between these two
superlattices is that the first one is rotationally invariant, while the second one
is not. We have shown that conductance of superlattices built of metallic carbon
nanotubes does not critically depend on their rotational invariance for short or
intermediate periods. This behaviour significantly differs from that of single junc-
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tions and quantum dots built of such nanotubes, where a strong dependence of
conductance on the rotational invariance was observed.
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