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The electro-optical Kerr effect of n-alkanes from C5 to C16 was inves-

tigated in gas phase, liquid phase, and solution. The values of the Kerr

constants in gas phase are noticeably distinguishable from those in liquids,

where the molecules interact by the London dispersion forces. Both the en-

ergy of the dispersion interaction and the difference in the Kerr constants in

liquid and gas phase grow with molecular size, indicating the key influence

of the interaction on the magnitude of the Kerr effect. Several orientation

and molecular-statistical theories of electro-optical Kerr effect were applied

to model the change in electro-optical Kerr effect due to the dispersion force.

Most theories show significant divergence compared to the experimental

data. It is argued that the decisive contribution to electro-optical Kerr effect

in liquids and the deviations between the experiment and theory arise due

to local liquid structures that collectively orient in the external electric field.

PACS numbers: 31.70.Dk, 78.20.Fm

1. Introduction

Starting from the breakthrough experiments by Kerr, electrical birefringence
has become a subject of active experimental and theoretical research. The contin-
uous interest in the electro-optical Kerr effect (EOKE) stems from its ability to
provide valuable information on optical and electric properties of isolated atoms
and molecules, as well as their geometric structure. Intermolecular interactions
(IMI) in condensed phase [1–4] have a particularly strong influence on EOKE
[5–7] making it indispensable for studies of solutions and pure liquids.

The orientation theory developed by Langevin and Born (LB) for the descrip-
tion of EOKE [8] is supported by the experimental results for gases and vapors.

(429)
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The theory computes the energy of interaction of a polar or anisotropically po-
larized molecule with the electric field. The values of the Kerr constants of pure
liquids calculated using the LB formula (BLB) are significantly higher than the ex-
perimental values (Bexp). The ratio BBL/Bexp is on the order of 1.5÷2.0 [3, 9−11]
and in case of polar liquids grows with increasing molecular dipole. The success of
the LB theory of EOKE for gases and its breakdown for liquids may be attributed
to the internal Lorentz field that provides a good description of the response of a
system of weakly-interacting gas molecules, but does not take into account the sig-
nificant role of IMI in liquids. The advancements of the EOKE theory for liquids
have taken place in the directions of: (1) improvement of the internal field model of
liquid under the assumption that the electrical and optical properties of molecules
are unchanged from gas to liquid [12]; (2) account of the correlation in molecular
orientations and the resulting change in the molecular parameters [2]; (3) account
of the electric field effects that are not included in the LB theory on birefringence
and that contribute to the polarizability anisotropy of aggregates [13].

An advanced account for the internal field [12, 14] improves the ratio of the
theoretical and experimental values of the Kerr constants of non-polar liquids to
Btheor/Bexp = 1± 0.5, a small average error, but still large deviations for individ-
ual compounds. The correction to the internal field is too large for many polar
compounds, such as pyridine, dichlorobenzenes, ketones, etc., the result is small
theoretical values Btheor < Bexp. The mean-field theory of binary mixtures [15]
requires a further correction in terms of the interaction parameter ΛmAB [16].

The structure and dynamics of organic liquids has been the subject of intense
investigation for many years. Neutron and X-ray diffraction studies of alkanes, for
example, show that short-range arrangement of molecules in a liquid is similar
to that in a solid [17, 18]. The studies of the liquid structure suggest that the
short-range order should be taken into account in the description of EOKE in
liquids.

The paper is organized in the following way. The next section reviews the
available theories of EOKE of liquids. The procedure for the measurement of
the Kerr effect in an alternating electric field is described in the “experimental
procedure” section. The results of the measurements in a series of n-alkanes are
presented in the “results and discussion” section, which compares the EOKE the-
ories and interprets the experimental data from the theoretical viewpoint. The
sources of the deviations observed between the theories and experiment are ana-
lyzed in detail. The paper ends with a “conclusions” section.

2. Modification of the orientation and molecular statistical theories
of Kerr effect in condensed media

The modifications of the internal field in the orientation theory of EOKE
can be classified into two groups: (1) methods that preserve the Lorentz functional
form for the internal field contribution to the Kerr constant [12, 14, 19, 20]; and
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(2) methods that replace the Lorentz function by a more complex model of the
internal field [14].

Developing an approach of the first type, Stuart [19] derived the following
equation for the Kerr constant B:

BS = 3π (Θ1 + Θ2)
N

nλ

(
ε + 2

3

)2 (
n2 + 2

3

)2

. (1)

Here N is the number of molecules in a unit volume, n is refractive index, λ is the
wavelength of the analyzing light, ε is static electrical permittivity, Θ1 and Θ2 are
the anisotropic and dipole contributions to the Kerr constant defined by

Θ1 = (45kT )−1 [(a1 − a2)(b1 − b2) + (a2 − a3)(b2 − b3) + (a3 − a1)(b3 − b1)],

Θ2 = (45k2T 2)−1 [µ2
1(2b1 − b2 − b3) + µ2

2(2b2 − b3 − b1) + µ2
3(2b3 − b1 − b2)],

where k is the Boltzmann constant, T is temperature in K, ai is static polarizabil-
ity, bi is optical polarizability, µi is projection of the dipole moment on the i-axis.
For non-polar liquids (µ = 0) Eq. (1) transforms into

BS =
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, (2)

where γ2 = [(b1 − b2)2 + (b2 − b3)2 + (b3 − b1)2]/2 is molecular polarizability
anisotropy.

Considering an isotropic field acting in an anisotropic medium, Vuks [12, 14]
derived the following expression for the Kerr constant:

BV = 3π (Θ1 + Θ2)
N
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)
, (3)

where the (ε + 2)/3 and (n2 + 2)/3 are present to the first rather than second
power as in Eq. (1). For non-polar liquids Eq. (3) simplifies to

BV =
2π

15kT
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3

)
, (4)

where γ2 is molecular polarizability anisotropy defined in Eq. (2).
The phenomenological theory of EOKE put forward by Zamkov [21] considers

the energy of a molecule in an electrical field and results in the equation

BZ1 = 3π (Θ1 + Θ2)
N
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)2

(5)

that contains (n2 + 2)/3 squared as in (1) and (ε + 2)/3 to the first power as in
(3). For non-polar molecules the theory of Zamkov gives

BZ1 =
2π

15kT
γ2 N
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. (6)
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A second expression for the Kerr constant derived by Zamkov [22] arises by con-
sideration of the Bettcher internal field

BZ2 =
πNn

3λ

(
ε + 2

3

)(
n2 + 2

n2

) ∑
Θ . (7)

Here, the sum
∑

Θ = Θ1 + Θ2 + Θ3 contains three rather than two contribu-
tions, with the additional Θ3 contribution introduced by Fought. For non-polar
molecules

∑
Θ = Θ1.

The molar Kerr constant (mK) is defined [14, 23] as the birefringence induced
by one mole of a compound and is a unique characteristic of the compound. The
mK values and related properties of the compounds under study are given in
the molecular anisotropy handbook [24]. Other molecular characteristics relevant
for the present study were taken in Ref. [25]. As explicitly defined by Briegleb in
Ref. [23] the magnitude of mK equals to the difference in the molecular refractions
of light with the orientations of the electric vector perpendicular and parallel to
the field, observed over 1 cm in the unit field.

The use of the internal Lorentz field leads to the following equation for the
molar Kerr constant [2]:

mKK =
6Bλn

(n2 + 2)2

(
3

ε + 2

)2
M

d
. (8)

The expression for the molecular Kerr derived by Le Fevre and Le Fevre [26] reads

mKL =
6Bλn

(ε + 2)2(n2 + 2)2
M

d
. (9)

Starting from Eq. (3) Vuks [14] derived the formula

mKV =
9Bλn

(ε + 2)(n2 + 2)
M

d
. (10)

Briegleb [23] determined the molar Kerr constant as

mKB =
Bλn

(n2 + 2)2(ε + 2)2
M

d
. (11)

Finally, the Onsager theory [27] results in

mKO =
1

(1− af)(1− bg)

(
mK0 − 2πN

9
afθ1

)
, (12)

where f = 2(ε− 1)/r3(2ε + 1); g = 2(n2 − 1)/r3(2n2 + 1); r is the average radius
of a molecule, mK0 is the molecular Kerr constant of isolated molecules, a and b

are constants. The relationship between mKL and mKO can be expressed only in
terms of the macroscopic parameters as

mKO = mKL

[
(2ε + n2)(ε + 2)

3ε(n2 + 2)

]2

. (13)
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The early theories of the Kerr effect [8] assume that molecules in a liquid
are statistically independent and can orient in any direction in space. However,
molecules in condensed phase interact and correlate in orientation with the nearest
neighbors.

A general statistical-mechanical equation for the calculation of the Kerr con-
stant based on the potential energy of the molecular interaction was derived by
Kielich [28]. The equation takes into account the angular correlation. The applica-
tion of the Kielich theory to specific cases is significantly more difficult compared
to the approaches discussed above, since it requires complex numerical simulations.

The statistical-mechanical theory of Buckingham [29] considers IMI between
molecules as well as the dependence of molecular polarizability on the field inten-
sity. The theory involves complex models and parameters that are rather difficult
to determine. Similarly to the Kielich theory, the Buckingham theory of the Kerr
effect is much less straightforward in practice than Eqs. (1)–(13).

The contribution of molecular hyperpolarizability into the Kerr constant is
estimated in Ref. [30]. An effort to construct a complete theory of EOKE in the
condensed phase including the contributions due to hyperpolarizability, angular
correlations, electrostriction, and Joule effect was undertaken by Proutiere [31].

A statistical-mechanical EOKE theory for non-polar liquids was developed by
Ladanyi and Keyes in Refs. [32, 33]. The theory describes IMI with the Kirkwood–
Ivon model and uses the Lorentz field. The latter is reliable for non-polar media,
but is not designed for polar molecules.

An attempt to take into account the super-molecular structure of condensed
matter with the purpose of improvement of the statistical EOKE theory on the
basis of the approach by Kirkwood and Frelich was undertaken in Ref. [34]. The
theory considers the properties of a microscopic sphere selected in a medium. The
liquid inside the sphere is treated at the microscopic level, while the outside of the
sphere is simulated as continuum. The average electro-optical parameters of the
system are computed with explicit regard to the intermolecular correlations inside
the sphere and interaction with the outside medium. Reference [35] showed that
T-shape nearest-neighbor molecular correlations are characteristic of liquid aro-
matic compounds. These correlations were observed earlier with X-ray dispersion
in liquids [36]. Although the theoretical attempt [34, 35] undertaken to account
for the nearest-neighbor correlations in liquids reflects correct physics, the practi-
cal application of the derived formulas to polar and non-polar liquids resulted in
errors exceeding the errors of the simpler models based on the orientation EOKE
theory.

Given the status of the existing theories, it is necessary to conclude that
the influence of IMI on EOKE can be most reliably estimated only based on the
experimental data. In this regard, n-alkanes constitute one of the simplest classes
of liquids where the nearest-neighbor correlations induced by IMI and their role
in EOKE can be analyzed theoretically and studied experimentally.
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3. Experimental procedure

3.1. Measurement of the Kerr effect in a variable electric field

The EOKE was investigated with a modernized version of the setup described
in Ref. [37]. The advantages of the setup include minimal time of impact of the
electric field on the system achieved by the impulse technique [15, 38], minimal
strength of the electric field in the Kerr cell, and absence of electrolysis in the cell.

The block diagram of the apparatus is given in Fig. 1. The helium–neon
laser LG-55 (λ = 632.8 nm) (I) was used as the light source. The electronics setup
consists of the system for stabilization of the laser beam intensity (II), power
source (III), high-voltage meter (IV), and registration amplifier (V). The system
for laser intensity stabilization (II) sends a feedback signal through the amplifier
that controls the vertical deviation in oscillograph CI-15. The power supply (III)
for the Kerr cell includes the sound generator G3-33 and capacity amplifier U4-27.
The amplifier output goes into the high-voltage transformer NOM-6. The electric
field generated by the system can be continuously controlled up to the 10 kV
voltage at frequencies ranging from 25 to 15000 Hz.

Fig. 1. The block-scheme of the apparatus for the electro-optical Kerr effect measure-

ments. A detailed description is given in the main text.

The measuring (M) and compensative (K) cells of the relative measurement
setup were located on the same optical axis. The high voltage inside the cells
was determined with the digital voltmeter V2-22. The accuracy of the converter
V3-23 was within 0.07–0.1% at frequencies from 400 Hz to 10 kHz and 0.5% at
frequencies from 50 Hz to 400 kHz, allowing for the accuracy of the cell voltage
within about 0.1%.

The registration amplifier was placed in the same case with the photomulti-
plier PMP-96. The PMP was fed with the high voltage source B5-24. The broad-
-band amplifier was based on the integrated microcircuit 2UC261B. The narrow-
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-band and constant-current amplifiers were made with the integrated microcir-
cuits 1UT402. The synchronous detector was made with the integrated keys of
the 1KT621A type.

The liquid layer in the quartz thermal cell was 6 cm thick. The titanium
electrodes were 4 cm in length. The design of the cell allowed filling it with liquid
without air access. The Frank–Ritter prisms of the 10× 10 mm size were used for
the polarizer (P) and analyzer (A) of light. The λ/4 plate served for transformation
of the system into the linear measurement mode.

The measuring (M) and reference (K) cells were mounted at the 45◦ angle
to the polarizer plane and had either mutually perpendicular or mutually parallel
arrangement of the electrodes, depending on the sign of birefringence in the ref-
erence and measuring cells. The sign of the birefringence arising in the first cell
should be inverse to the sign of the birefringence generated in the second cell. The
compensation between the two cells resulting in the absence of total birefringence
and disappearance of the variable component of the photomultiplier current was
controlled by the voltage on the electrodes. The compensation condition is

Bst

Bx
= const1

E2
x

E2
st

, (14)

where Bst is the Kerr constant of the reference substance, Bx is the Kerr constant
of the substance under study, const1 is a cell constant determined by calibration,
when both cells are filled with the same substance, Est and Ex are the intensities
of the electric fields in the corresponding cells.

A uniform electric field between electrodes in a Kerr cell legitimizes replace-
ment of the electric field in Eq. (14) with voltage

Bst

Bx
= const2

U2
x

U2
st

, (15)

where Ust and Ux are the voltages in the reference and measuring cells and const2
is a cell constant similar to const1 in Eq. (14).

The voltage fed onto the reference cell is typically fixed, and the adjust-
ment for the birefringence compensation is carried out by changing the voltage
of the measuring cell. The voltages of the reference and measuring cells were
determined with the converter V3-23. Benzene was used in the reference cell of
the birefringence compensation experiments. The Kerr constant B of benzene at
λ = 632.8 nm and T = 298 K equals to 3.54× 10−15 m V−2 [39].

The Kerr constants were also measured in reference to a standard phase-
-shifting plate using a phase detector in the recording amplifier. This type of
measurements avoids the compensation procedure and gives the absolute values of
the Kerr constant directly.

The error analysis for the measurements carried out with the above setups
showed that for liquids with resistance 109 Ω cm or above the accuracy of the
compensation scheme was better than 0.1%, with the errors arising primarily due
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to the inaccuracy in the measured voltages of the two cells. Other instrumental
errors were small relative to the voltage error. The instrumental error of the
absolute measurements was estimated at 0.4%.

The refractive index of the liquids was measured with the Pulfrich IRF-23
refractometer. The relative error of the refractive index measurements equaled
0.02%.

3.2. Substance preparation

It was essential for the birefringence measurements that the substances under
study were purified, and kept dry and clean. Particular attention was given to
the removal of impurities that could interfere with normal measurements. The
necessary conditions for the electro-optical measurements included:

1) complete absence of dust in the liquid under study;
2) sufficient transparency of the liquid at the given wavelength;
3) complete absence of water in the liquid.

The cleaning and dehydration of the alkanes was carried out using the procedures
described in Ref. [40].

4. Results and discussion

Table I shows the results of the EOKE measurements and refractive index
of the series of n-alkanes under investigation. Confirming the literature data [42]
obtained at λ = 546 nm, the data of Table I show that the Kerr constant Bexp

grows with increasing number of carbon atoms (nC) in the alkane molecule. The
smallest deviations between the experimental and theoretical values of the Kerr
constant (∆B = Bexp − Bicalc) are seen with BZ1 of Eq. (6), while the largest
deviations occur with BZ2 of Eq. (7). The BS values calculated with Eq. (2) show
the slowest increase in the Kerr constant with increasing nC (Fig. 2).

The observed ∆Bi = f(nC) dependence fully corresponds to the increase in
the IMI energy between n-alkane molecules in liquids with increasing nC (Table II).
Since n-alkanes carry no dipole moments (µ = 0), the dispersive interaction (E0

disp)
is the key contribution to the IMI energy. The dispersive interaction energy can
be computed according to [45]:

E0
disp =

1
(4πε)2

3Iiα
2
i

4R6
ii

, (16)

where Ii is ionization potential, ai is average molecular polarizability, and Rii is
average distance between the interacting i molecules.

The distance between a pair of interacting molecules in a liquid n-alkane
(Rii) can be found from the molecular volume (Vi). If rii is the radius of the
cavity occupied by a single molecule in the liquid, the magnitude of Rii is twice
the radius Rii = 2rii. The X-ray studies of liquid n-alkanes [18] indicate that
the average distance between the molecules in the first coordination sphere equals
5.38 Å. This value was used in the calculation of E0

disp reported in Table II.
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Fig. 2. Dependence of the difference between the experimental and calculated values

of the Kerr constant ∆B = Bexp − Bicalc on the number of carbon atoms (nC) in

n-alkane: I — for ∆BZ2 = Bexp − BZ2, II — for ∆BS = Bexp − BS, III — for ∆BZ1 =

Bexp − BZ1, IV — for ∆BV = Bexp − BV. Bicalc (BZ2, BS, BZ1, BV) are computed

with Eqs. (2), (4), (6), (7). The scale of ∆BZ2 is given in parentheses.

The magnitudes of the molar Kerr constant mK of the alkanes under in-
vestigation are given in Table III. The functional relationship between the molar
Kerr constant and the number of atoms in the alkane molecule is illustrated in
Fig. 3. Both mK and B grow with nC. The growth is especially fast in gas phase,
where the interaction between the molecules is minimal. In the ideal case, when
association or other kinds of IMI that affect molecular orientation are absent, the
molar Kerr constant should not change from gas to liquid or solution. If an IMI
of any form influences molecular orientation in a liquid, the mK magnitude will
change. This effect is clearly seen with the n-alkanes. IMI that may be present in
the gas phase are greatly amplified in the liquid phase and solution.

Fig. 3. Dependence of the molar Kerr constant (mK) of n-alkanes on the number of

carbon atoms (nC) in the molecule: I — in gas phase (mKgas); II — in liquid phase

(mKliq); III — in liquid phase calculated using the data of this work and the Le

Fevre equation (9); IV — in cyclohexane; 4 indicate the measurements in CCl4. The

experimental mK values are taken from Ref. [38].
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The analysis of the solvent–solute interactions is performed in present ac-
cording to the classification [46]:

E = Ei + Eij + Ejj , (17)

where i and j mark solute and solvent, respectively.
Discrete-continuum model [47]. The fact that solute molecules in a dilute

solution are surrounded by solvent molecules only, Fig. 4, allows for the follow-
ing treatment of IMI. Molecular interactions in the first coordination shell are
computed explicitly, and the energy of interaction between the solute molecules is
neglected.

Fig. 4. The discrete-continuum model of interaction of a solute molecule (i) with solvent

molecules (j) in a medium with dielectric permittivity ε.

The solute–solvent interaction within the first coordination shell can be ex-
pressed as [47]:

E =
1

(4πε)2

(
Z

R6

)

1

[
ϕdisp

3
2

IiIj

Ii + Ij
αiαj

+ϕd−d
2
3

µ2
i µ

2
j

kT
+ ϕd−id

(
µ2

i αj + µ2
jαi

)
]
, (18)

where Z is the number of solvent molecules in the first coordination shell. Since
interactions in condensed phases include many particles, and Eq. (18) represents
only the pairwise component of the interaction, the corrections ϕi for many-body
effects are introduced. The correction is assumed constant for a series of solutes in
the same solvent. In the case of non-polar molecules such as alkanes in non-polar
solvents such as CCl4 and C6H12 Eq. (18) simplifies to

Edisp
ij =

1
(4πε)2

(
Z

R6

)

1

3
2

IiIj

Ii + Ij
αiαj . (19)

Equation (19) was used to analyze the IMI energy of the n-alkane solutes with the
CCl4 and C6H12 solvents. The results are presented in Table II. As expected, the
data indicate that the IMI energy grows with the size of the molecule nC. The
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difference between the gas phase and solution values of the molar Kerr constant
∆mK = mKgas − mKsol increases with the IMI energy (Fig. 5). The correlation
between ∆mK and the strength of the IMI supports the conclusion that the IMI
plays the main role in the reduction of mK of the alkanes during the transition
from gas into solution.

Fig. 5. Dependence of ∆mK = mKgas −mKsol on the energy of dispersion interaction

of n-alkanes with the solvent molecules: I — in CCl4, II — in C6H12.

The models of the EOKE producing Eqs. (8)–(13) for the molar Kerr con-
stant were used to calculate the mK values on the basis of the experimental data
of Table I. As follows from the mKi values presented in Table III, as well as from
the magnitudes of Bi shown in Table II, the Kerr constants in the condensed phase
differ strongly from the corresponding gas phase values mKgas. The greatest devi-
ations are observed for mKV calculated according to Eq. (10), while the smallest
deviations are seen with mKL computed with Eq. (9). Since the dispersive interac-
tion energy Edisp correlates with the n-alkane length nC, the |∆mKi| magnitudes
increase steadily (Fig. 6), but with different slopes depending on the internal field
model.

Fig. 6. The relationship between ∆mKi (∆mKi = mKgas − mK liq) and the

energy (E) of dispersion interaction between alkane molecules in liquid phase: I —

∆mKB, Eq. (11); II — ∆mKL, Eq. (9); III — ∆mKK, Eq. (8); IV — ∆mKV, Eq. (10).
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Liquids possess local order [48, 49] as evidenced by X-ray diffraction in par-
ticular [17, 18, 50, 51], revealing liquid local order that closely resembles the crystal
structure. For example, n-pentane shows both a parallel local order, where the
molecules are arranged in the same direction and are shifted along the molecular
axis by about 2.5 Å with respect to each other, and a perpendicular local structure
resembling letter T [18]. In addition to the local order, and in contrast to crystals,
molecules in liquid participate in collective rotations [52].

The mK values are very sensitive to the changes of the molecular and su-
permolecular structures in liquids. A number of tensor-additive schemes for the
computation of the mK magnitudes from polarizabilities of individual bonds have
been developed [25]. Such tensor-additive values of mKadd

i were computed (Ta-
ble III) based on the data of Ref. [17] showing that n-alkanes prefer the periplanar
conformation (ap) (Fig. 7). The calculations were performed using the tensor-
-additive schemes of Le Fevre [53], Caristan et al. [54] and Vuks [55]. The Le
Fevre approximation is most popular and assumes that the C–H bond is isotropic
(bL = bT = bV). The Le Fevre scheme uses the following values for the half-axis
of the bond and group polarizability ellipsoids given in Å3 [53]. C–C: bL = 0.97,
bT = bV = 0.26; C–CH3: bL = 3.00, bT = bV = 2.18; C–H: bL = bT = bV = 0.63.
The corresponding values used in the Caristan scheme [54] are C–C: bL = 1.38,
bT = bV = 0.07; C–CH3: bL = 3.32, bT = bV = 2.10; C–H: bL = 0.81,
bT = bV = 0.59. The work of Vuks [55] made systematic assumptions about
the anisotropies of the C–H and C–C bonds that were further tested experimen-
tally. As the first step in the determination of the bond polarizability parameters,
the range of possible absolute polarizability values was established. Then, the
bond polarizability parameters were derived based on the experimental data for
ethane and related molecules, and under the assumption that in a homological
series the parameters of the C–H bond do not change. The procedure resulted
in the following values of the bond polarizability anisotropy: bL(C−C) = 1.53,
bT(C−C) = bV(C−C) = 0.16; bL(C−H) = 0.81, bT(C−H) = bV(C−H) = 0.57 [55].
The molar Kerr constants obtained by the tensor-additive schemes due to Le Fevre
mKadd

L , Caristan mKadd
B and Vuks mKadd

V are presented in Table III. The com-

Fig. 7. The conformation of n-pentane molecule (a) and the designations of the

conformation types (b): sc — synclinal, ac — anticlinal, sp — synclinal-antiperiplanar,

ap — antiperiplanar.
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parison of the calculated mKadd
i and experimental mKgas values shows that the

additive scheme of Vuks shows the best agreement with the experiment.
The molar Kerr constants calculated using the tensor-additive schemes de-

scribed in the previous paragraph were computed for the most stable conformation
of n-alkanes. Generally, however, alkanes have significant conformational flexibil-
ity and may exhibit a set of conformers rather than a single fixed configuration. In
order to estimate the conformational flexibility of n-alkanes as well as the fraction
of each conformer that exists in thermodynamic equilibrium at a given temper-
ature, it is necessary to consider the potential energy (U) of the molecules as a
function of the internal angles [56]. The torsion angle dependence of the potential
energy U of ethane-like molecules is shown in Fig. 8. The energy difference between
the maximum and minimum defines the height of the torsion energy barrier that
must be overcome during the transition between the conformers. Only the first
several members (C2−C4) of the n-alkane series exhibit very good agreement be-
tween the calculated mKadd

V and experimental mKgas values: for C2H6 1.021 (1.0);
C3H8 1.535 (1.5); C4H10 2.552 (2.6), correspondingly. The longer homologues in
the series show a larger divergence between mKadd

i and mKgas (Table III) because
of the conformation flexibility that increases with nC. In particular, the longer
n-alkanes show appreciable amounts of both synclinal-antiperiplanar (sp) and dou-
bly antiperiplanar (ap) conformations [57].

Fig. 8. Dependence of potential energy (U) on the internal rotation angle (θ◦) for

ethane-like molecules.

Due to the high conformational flexibility, it is not straightforward to
quantify the effect of local structures on the EOKE values in liquid n-alkanes.
For instance, the experimental molar Kerr constant of liquid n-pentane equals
mKexp = 1.41×10−27. The theoretical value for the monomer calculated with the
tensor-additive scheme of Vuks [55] is a factor of two larger mKadd

V = 3.56×10−27.
The corresponding calculations for the two dimers that dominate the local order
of liquid n-pentane [17] give mKcalc

T = 0, mKcalc
‖ = 1.10 × 10−27. These results

testify that indeed the effect of the local order on the EOKE in the liquid is strong,
and that liquid n-alkanes exist in equilibrium of the T-shaped dimers and other
forms having mK > 0.

The study of the local structures and their role in EOKE is greatly facilitated
by the use of conformationally stable compounds with known liquid order, such
as benzene, naphthalene, carbon disulfide, etc. Studies of EOKE in these liquids
are planned for the near future.
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5. Conclusions

Simple theories describe EOKE qualitatively and give correct quantitative
trends, but do not make reliable quantitative predictions for the magnitudes of
the Kerr constant B and molar Kerr constant mK even for such simple liquids
as n-alkanes. IMI between the molecules in the condensed phase greatly affects
the values of the Kerr constants. The growth of the IMI energy reduces the
magnitudes of B and mK in liquid n-alkanes relative to the gas phase values. All
theories predict this effect regardless of the specific internal field model used for
the description of birefringence in pure liquids and solutions. Comparison of the
molar Kerr constants calculated according to the tensor-additive schemes with the
measured values showed that good agreement between theory and experiment can
be reached only if the theory accounts for the local liquid order. The collective
molecular orientations greatly influence the liquid response to the electric field and
determine the mechanism of EOKE in the condensed phase.
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