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The application of the stochastic genetic algorithm in tandem with the

deterministic Powell method to automated extraction of the magnetic para-

meters from powder EPR spectra was described. The efficiency and robust-

ness of such hybrid approach were investigated as a function of the uncer-

tainty range of the parameters, using simulated data sets. The discussed

results demonstrate superior performance of the hybrid genetic algorithm

in fitting of complex spectra in comparison to the common Monte Carlo

method joint with the Powell refinement.

PACS numbers: 02.60.Pn, 02.60.Ed, 76.30.Fc, 82.75.Mj, 61.43.Gt

1. Introduction

Paramagnetic samples in the form of randomly oriented powders, glasses or
frozen solutions give rise to the EPR spectra that usually are not easily amenable
to direct quantitative analysis. In addition, low symmetry environments often
encountered in disordered heterogeneous systems can further complicate the spec-
tra [1]. Under such circumstances direct measurements based on the resonance line
positions may give incorrect values, and advanced computer analysis and computer
simulation are the only method suitable for accurately extracting the parameters
[2, 3]. Single simulations, however, are of rather limited practical significance,
because the number of parameters to be optimized may be large in many cases,
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and they encompass a wide range of possible values, which creates a strongly
nonlinear multivariate optimization problem. Therefore, automated fitting is an
indispensable component in any proficient analysis of the powder EPR spectra.
The conventional local refinement methods used in the EPR spectra optimization
strongly depend on the starting point, and their performance is rapidly hindered
with the increasing number of parameters. Therefore, global techniques are em-
ployed to tackle optimization problems with many local optima. Among them the
genetic algorithm (GA) based methods have recently received a great deal of inter-
est, because of their outstanding performance [4, 5]. In this paper we describe an
implementation of the genetic algorithm to optimization of EPR spectra and the
evaluation of its performance in comparison to the Monte Carlo (MC) method,
both joint with the Powell (PA) refinement, for automated analysis of complex
calculated powder patterns such as might be observed for intrazeolite copper(II)
complexes.

2. Spectra simulation and genetic algorithm premise

The test EPR spectra (vide infra) used in this study are parameterized in
terms of the following spin Hamiltonian:

H = µBS · g ·B + I ·A · S. (1)

In this formalism the g tensor describes the electronic Zeeman interaction, the
A tensor — the hyperfine coupling between the electron spin S = 1/2 and the
nuclear spin I = 3/2.

To simulate the spectrum, the set of adjustable spin Hamiltonian para-
meters along with the values of the intrinsic linewidths, P = {g, A, σ(B) . . .},
has to be complemented by a collection of the associated parametric variables
{ν, S, I, θ, φ, h . . .}, containing auxiliary information about the resonance fre-
quency ν, the values of S and I, the θ and φ angle increments used for integration
as well as the number of the simulation points h. Once the full set of the pa-
rameters P is known, the associated spectrum can readily be obtained by the
simulation Y (B; ν) = f(P ) in the following way:

Y (B; ν) = C

∫ π/2

θ=0

∫ 2π

ϕ=0

∑

i

P (i, θ, ϕ, ν)f(B −B0[ν], σB)d cos θdϕ, (2)

where P (i, θ, φ, ν) is the transition probability, f(B −B0[ν], σB) is the line shape
function, and C is a constant that incorporates all instrumental parameters [6].
Actually the parameters can be extracted only through successful fitting of the
simulated spectrum to the experimental one because the reverse procedure is un-
available. In praxis, due to exceedingly complicated mathematical nature of pow-
der EPR spectra, the simulation process needs to be combined with advanced
optimization methods to be efficient. In this context stochastic optimization tech-
niques like genetic algorithm are particularly appealing since the spin Hamiltonian
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search space Hp is usually complex and with many local minima, so that conven-
tional methods often fail to find the global solution [7].

For the optimization of multicomponent EPR spectra we have implemented
a genetic algorithm (GA) combined with subsequent direct Powell (PA) refine-
ment into a simulation program EPRsim32, as described elsewhere in more detail
in [8]. The advantage of incorporating the local search method (PA) within the
structure of the global genetic algorithm consists in synergistic amalgamation of
deterministic and stochastic characters of both minimization procedures. To de-
sign the GA machinery, one should specify the size of an initial population Ω(m)
of individuals Gi, a coding method (representation), a fitness index F (Gi) of each
individual, and the formulation of genetic operators of selection, recombination,
and mutation.

In our implementation the full set P of the spectral parameters was encoded
into polychromosomic individuals Gi = {X1, X2, . . . , Xc}, composed of c chro-
mosomes Xj , corresponding to the particular component signal Yj(B) of a total
EPR spectrum. Each chromosome Xj = {xj

1, x
j
2, . . . , x

j
n} is a string of genes xj

n

coded as 32-bit floating point numbers from the [–1, 1] range. The number of
genes is equal to the number of parameters n in the component signal j. The
information contained in the chromosome Xj can be converted from genetic space
into the parameter space using the following translation function:

P = X(∆P 0) + P 0, (3)

where P 0 and ∆P 0 are the strings of the starting point parameters and their un-
certainties, respectively. In this approach an individual Gi can be identified with a
genotype corresponding to all the simulation parameters Gi → P i. The associated
phenotype is then constituted by the simulated EPR spectrum Y (B; ν) = f(P ),
which is in turn compared with an environment — the experimental spectrum
y(B; ν) as it is shown in the box situated on the left-hand side in Fig. 1. The
mean square (RMS) error was used as a fitness function to be minimized.

To launch the optimization process an initial population Ω(m) = {Gi} of
the individuals (potential solutions) was created at random from the assumed
uncertainty range of the parameters. The population was next evolved follow-
ing the GA principles, and better regions of the search space were explored by
genetic operators of selection, crossover and mutation, that acted upon the ini-
tial population. A fitness proportional (roulette wheel) reproduction along with
elitist succession was applied to produce a descendent sort of the individuals. A
uniform crossover operator, consisting in arithmetic averaging of the parental chro-
mosomes X1 and X2 was used for this purpose (Xnew

1 = Xold
1 + g(Xold

2 −Xold
1 )

and Xnew
2 = Xold

2 + g(Xold
1 −Xold

2 ), where g is a random number with uniform
distribution in the [0, 1] interval). A non-uniform mutation was described by the
fluctuation function ∆(τ, z) = z(1− g(1−t/tmax)b), where t numbers the subsequent
generations, z limits the maximum variation of the given gene to the specified
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Fig. 1. Flowchart of the hybrid genetic algorithm used for optimization of powder EPR

spectra. The relationship between the genetic space (genotype, phenotype, environment)

and the problem space (parameters, simulated spectrum Y (B; ν), and experimental

spectrum y(B; ν)) is also shown.

range, whereas b describes the system non-uniformity [4]. During each genera-
tion t, the current population is improved in the sense that a fraction of inferior
individuals is replaced by new ones with better fitness, obtained as the offspring
(Fig. 1). The major strength of such algorithm is the ability to explore and ex-
ploit a large parameter spaceHp with no initial guesses and derivative information,
and to avoid trapping in local minima. However, GA exhibits a distinct drawback,
the true minimum, i.e., the best solution, is scarcely reached although the fittest
individual in the final population should, in principle, be close to the optimal pa-
rameters [9]. Therefore, regardless of the quality of the results obtained with the
genetic algorithm, deterministic Powell search was applied as a complementary
measure to refine the ultimate results. An intimate neighborhood impact factor
INF(Y , y, ε) was used to trigger the swapping from GA to PA minimization, and
to measure an overall quality of the fit (quantify the mutual resemblance of both
spectra) as well [8]. The INF gauges the fraction of the simulated data points that
are located within a user defined envelope surrounding the experimental spectrum
of the widths ε (Fig. 2a).

3. Evaluation of the optimization algorithm

The efficiency of the hybrid implementation was evaluated using a complex
test EPR spectrum with 17 adjustable parameters composed of three superimposed
signals: an axial signal S1 with g‖ = 2.37 > g⊥ = 2.06 and A‖ = 12.1 mT,
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Fig. 2. Multi-component powder EPR test spectrum (a) along with its intimate neigh-

borhood envelope, and (b−c) the constituent signals.

A⊥ = 2.0 mT, σ⊥ = 2.3 mT, σ‖ = 4.5 mT (Fig. 2b), a signal S2 with g⊥ = 2.32 >

g‖ = 1.97 and A‖ = 13.1 mT, A⊥ = 4.5 mT, σ⊥ = 4.0 mT, σ‖ = 4.0 mT (Fig. 2c),
and an isotropic signal S3 with gav = 2.18 and Aav = 16.0 mT, σ = 18 mT
(Fig. 2d). These parameters refer to various types of copper cage aquacomplexes
in ZSM-5 zeolite [10]. Because all adjustable parameters are known a priori, in
the case of successful optimizations a complete agreement between the calculated
and fitted spectra can be obtained, identifying the global minimum univocally.
For the convergence tests uncertainty limits ∆P 0 = ±20%, ± 60%, ± 100%, and
±120% were imposed on all adjustable parameters, whereas the starting point P 0

was selected at random. Eight independent initializations of the hybrid genetic
algorithm were used to equilibrate the results. Following our earlier study on
meta-optimization of the internal GA parameters [8], the crossover rate was set
to pcrs = 0.9, the mutation rate pmut = 0.02, and the population size m = 200
was used. As a fitting successfulness criterion we took INF = 98% for ε = 0.028.
The results of the hybrid GA–PA search were next compared with the MC–PA
optimization.

The performance profiles of the GA–PA search are shown in Fig. 3 for all the
investigated ranges of ∆P 0. In these tests for successful optimization exact solu-
tions (RMS → 0) are in principle possible. From Fig. 3a–d it is apparent that all
8 runs of the genetic algorithm converged below the INF limit, regardless of the size
of the assumed uncertainty range. The decrease in RMS was approximately expo-
nential in nature, showing that the most rapid improvements occurred early in the
evolutionary process. Although the overall progress was persisted as the algorithm
evolves, its efficiency was remarkably slow down revealing an expected robustness
of the global GA search and its inherent difficulty in fine-tuning. Therefore, once
the convergence approached the INF level, the current values of all adjustable pa-
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Fig. 3. Performance profiles of the hybrid genetic algorithm-Powell optimization for

various range of input uncertainty (a) ∆P 0 = 20%, (b) ∆P 0 = 40%, (c) ∆P 0 = 60%,

(d) ∆P 0 = 120%. The horizontal dashed line indicates an average RMS corresponding

to INF = 98%. Black lines indicate GA and grey — PA optimization steps.

rameters were taken as the starting point for the subsequent Powell refinement.
Spectacular convergence, leading to a practically perfect fit (RMS < 10−7) in
most cases revealed that GA can very effectively locate promising regions in the
spectral parameters search space, which are sufficiently close to the global mini-
mum. The increasing uncertainty range ∆P 0 of the input parameters markedly
influence the performance of the hybrid algorithm, as it can be inferred from the
enhanced number of simulations required to successfully accomplish the fitting. It
also somewhat deteriorates the subsequent PA refinements, which in one or two
cases were caught in suboptimal regions, located yet well below the INF threshold
(Fig. 3c, d). Thus, the ambiguity of the input parameters, influencing mainly the
time of the minimization process, does not seem to be a very critical obstacle for
achieving the final success.

The analogous progress of convergence using MC–PA optimization is shown
in Fig. 4 for ∆P 0 = 40%,±60%,±100%, and ±120%. The global search with MC
method involved 2000 random trials of the algorithm for finding the most promis-
ing regions as the starting point of the subsequent PA fine tuning. To equilibrate
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Fig. 4. Performance profiles of the Monte Carlo – Powell optimization for (a) ∆P 0 =

20%, (b) ∆P 0 = 40%, (c) ∆P 0 = 100%, and (d) ∆P 0 = 120%. The horizontal dashed

line indicates an average RMS corresponding to INF = 98%. Black lines indicate MC

and grey — PA optimization steps.

the results ten independent MC–PA runs were executed. From the inspection of
the results (Figs. 3 and 4) it is clear that the GA thoroughly outperforms the
MC search. The global minimum was located only for the first two uncertainty
ranges of the parameters, with 3 out of 10 successful trials for ∆P 0 = ±40%
(Fig. 4a), and only one successful trial for ∆P 0 = ±60% (Fig. 4b). All other
attempts became essentially stacked in various shallow minima located around
the assumed INF limit, already at quite early stages of the optimization process.
Further prolongation of the MC–PA optimization was completely unproductive in
contrast to GA–PA search. For the large uncertainty interval of the parameters,
∆P 0 = ±100% and ±120%, each of the 10 runs failed to find the global minimum
(Fig. 4c, d). All the trials leading to suboptimal solutions located, distinctly above
the INF limit (with one exception) indicate that in such cases the MC–PA search
was essentially unable to recognize the test spectrum properly. Thus, in con-
trast to GA–PA, for the MC–PA optimization subroutine the search efficiency was
profoundly deteriorated while increasing the uncertainty range of the adjustable
parameters.

4. Conclusions

The hybrid genetic algorithm combining global stochastic search with local
deterministic refinement by the Powell method is capable of successful fitting com-
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plex powder EPR spectra, even in the case of large uncertainties in the starting
values of the adjustable parameters. The discussed examples revealed that owing
to the joint action of the meta-optimized crossover and mutation operators, con-
trolling the exploitation and exploration aspects of the optimization process, the
genetic algorithm locates the most promising regions of the search space much more
effectively than the conventional Monte Carlo method. The results demonstrate
the promising power of the GA–PA approach in automated fitting and assigning
of EPR spectra that can be hardly analyzed with conventional methods. The
GA–PA method has been implemented into the simulation program EPRsim32
written in Microsoft visual C++ 6.0. The program runs under Microsoft Windows
with full 32 coding and is available upon request.
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