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A computer program was developed for studying transferred nuclear

Overhauser effects in complex spin systems. It permits quantitative analy-

sis of nuclear Overhauser effects observed in biologically important systems,

such as ligands interacting with transmembrane receptors in the presence

of lipid bilayers. The full generalized relaxation matrix approach takes into

account the local mobility, spin equivalence, finite exchange rates, and spec-

tral overlap. The program can be used either to simulate theoretical nuclear

Overhauser effect buildup curves or to fit a relaxation matrix of a given

model to experimental data. Selected examples illustrate the program’s per-

formance.

PACS numbers: 82.56.Ub, 82.20.Wt, 07.05.Kf

1. Introduction

NMR spectroscopy is an important tool in studying structure and dynamics
of biological molecules [1]. It has evolved to the point where it is possible to study
structures of ligands, bound to their receptors from the exchange-mediated nu-
clear Overhauser effect (transferred NOE) [2]. Typically, ligand is a small molecule,
whose highly resolved spectrum contrasts with the broad or even unobserved spec-
trum of a slowly tumbling macromolecule. Complexation implies immobilization
of the ligand in the binding site of the receptor, which leads to the quenching of
the ligand’s signal. For low affinities, there is fast exchange between the ligand’s
free and bound states, leading to a transfer of information from the bound state
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to the free one, where it is recorded. Transferred NOE spectra are analyzed in
the same way as ordinary NOE spectra, with the same approximations (lineariza-
tion of buildup curves for short mixing times, using reference data to determine
unknown distances). A new parameter which appears in the case of transferred
NOE is the exchange rate between the bound and free states. In principle it can
be measured by NMR or other methods [3–5].

Our research activities focus on the studies of neuropeptides, which are im-
plicated in the perception of pain and control of motility by binding to opioid
receptors [6]. The ligand conformation in its binding site is a very important
piece of information in structural model refinements. Neuropeptides interacting
with opioid receptors in the presence of lipid bilayers represent a complex macro-
molecular system, in which molecules are free to adopt varying conformations and
appear in several states (ligand molecules in the free state, interacting with lipids
and complexed with receptors). Exchange rates and populations of molecules in
each state can be inferred from a basic set of parameters, such as concentrations
of system components and diffusion constants [7]. In order to extract informa-
tion about the structure of the bound ligand from experimental data collected on
samples of this type, a rigorous quantitative analysis of NOE data is necessary.
We opted for the full relaxation matrix treatment of the system. Recent examples
of the relaxation matrix application concern systems composed of two molecules
(ligand/enzyme) in two or three states [8–11]. We generalized these approaches
by creating a program, capable of handling several molecules exchanging among
multiple states with arbitrary rate constants. The software, ANAGRAM (analysis
of NOE amplitudes by the generalized relaxation matrix), handles local mobility,
spin equivalence and spectral overlap. Given a definition of a spin system, it can
simulate theoretical data. More importantly, it performs fitting to experimental
data. Herein we present a description of the methods and algorithms used in the
program.

2. Theory

The time evolution of the matrix of NOE peak intensities A can be described
by the differential equation

dA

dt
= −GA, G = R−K, (1)

where R represents the relaxation matrix of the spin system, and K is the ma-
trix of chemical or conformational exchange rates. G is the generalized relaxation
matrix of the spin system. The solution of Eq. (1) is obtained by computing the
eigenvalues λi and the matrix of eigenvectors χ of the generalized relaxation ma-
trix G for a given mixing time τ :

A(τ) = A0 exp(−Gτ) = A0χe−λτχ−1, (2)

where e−λτ is a diagonal matrix with elements e−λiτ and A0 is the matrix of ini-
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Fig. 1. Flowchart of the ANAGRAM program.

tial magnetization values, usually normalized to unity in thermal equilibrium and
multiplied by the corresponding spin populations. Figure 1 shows the flowchart of
the program. The input parameters define the spin system with its structure and
dynamics, and the details pertaining to the working mode (simulation or fit). The
relaxation matrix R as given by [12–15] contains the dipolar relaxation rates for
all spins. In general, for k states, the matrix R has Nk ×Nk elements, where N

is the total number of spins in all molecules in any given state. For isotropically
tumbling isolated spin pairs, the off-diagonal elements σkl are given by

σkl =
B

r6
kl

[6J2(τkl)− J0(τkl)] . (3)

The constant B = 0.1γ4h̄2, rkl is the distance between nuclei k and l, and the
spectral density functions

Jn(τkl) =
τkl

1 + (nωτkl)2
(4)

are Lorentzian functions, depending on the Larmor frequency ω and on the rota-
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tional correlation time τkl of the internuclear vector rkl. The diagonal elements of
the relaxation matrix ρkk are the spin–lattice relaxation rates, given by

ρkk =
∑

l 6=k

ρkl + ρ∗k, (5)

where the ρ∗k are the relaxation leakage terms, representing spin relaxation due to
non-dipolar mechanisms, and

ρkl =
B

r6
kl

[J0(τkl) + 3J1(τkl) + 6J2(τkl)] . (6)

Local motions are taken into account by averaging the relaxation rates of the af-
fected spins according to the 〈r−6〉 law

〈σkl〉 =
1
M

M∑

i=1

σ
(i)
kl (7)

or motions slower than the overall tumbling of the molecule. For fast motions,
such as those of rapidly rotating methyl protons, the 〈r−3〉2 should be used. The
full expression was given by Tropp [16]:

σkl = B {[6J2(τ c)− J0(τ c)]F + [6J2(τ e)− J0(τ e)]G} ,

1
τe

=
1
τc

+
1
τm

, (8)

where τc is the correlation time of the vector between a spin and the center of the
methyl group, τm is the time constant characterizing the jumps of methyl protons,
and τe is the effective correlation time for the local movement of the inter-proton
vector. The functions F and G are given by [17, 18]:

F =
4π

5

2∑
m=−2

∣∣∣∣
〈

Y 2
m(Φ)
r3

〉∣∣∣∣
2

, G =
4π

5

2∑
m=−2

〈∣∣∣∣
Y 2

m(Φ)
r3

∣∣∣∣
2
〉
−F . (9)

Y 2
m are normalized spherical harmonics of the second order, while Φ represents the

set of spherical coordinates (θij , φij) of the internuclear vector rij . The brackets
denote averaging over all equivalent sites of the methyl protons. The intra-methyl
interaction between two protons is given by Eq. (3), with the spectral density
functions

Jn(ω) =
1
4

τ c

1 + (nωτ c)2
+

3
4

τ e

1 + (nωτe)2
, (10)

where τe is given by Eq. (8). The rotational correlation time τkl reflects the local
mobility of the internuclear vector rkl, linking spins k and l.

The elements kij of the exchange matrix K are rates, describing the migra-
tion of spins from one state to another. In practice, we often work with populations
which may be estimated from the concentrations of substrates at equilibrium. For



Quantitative Analysis of Transferred . . . 29

a special case of the two-state system, there are two independent rates and two
populations, given by

pA =
kBA

kAB + kBA
, pB =

kAB

kAB + kBA
. (11)

Generating NOE data matrix for a given set of mixing times τ requires cal-
culating the term exp(−Gτ), which consists in multiple diagonalizations. Similar
time-consuming procedures are involved in fitting to experimental data, which can
be best described as the search of the global minimum of a selected error func-
tion. This is a difficult problem and no single strategy exists, which guarantees a
solution. We provide several different algorithms, assuring flexibility in choosing
the strategy, adapted to any particular problem. The user can choose between
the hybrid matrix method [19], conjugate gradient algorithm [20] with matrix gra-
dients calculated according to Yip [21], and the simulated annealing approach as
described by Goffe et al. [22]. Only the last of the three algorithms offers the possi-
bility to reach the global minimum of the minimized error function. Consequently,
we have spent considerable time trying to optimize its performance.

Simulated annealing (SA) is a stochastic minimization algorithm, randomly
sampling the parameter space, and based on the probabilistic Monte Carlo
method [23]. The procedure is equivalent to simulating thermal fluctuations with
jumps occurring with the Boltzmann probabilities at temperature T . The temper-
ature is reduced according to the selected cooling protocol. In the simplest case,
it is a geometric progress, but our preferred choice is the Gaussian type of the
cooling scheme

Ti = T0e−( i−1
α )2

, (12)

where i is the index of the current temperature, and α determines the cooling
rate. The advantage of this model is that in the beginning the temperature falls
off slowly, permitting a thorough search of the parameter space, then it drops
faster when the algorithm has sampled the function landscape adequately, and
slows down in the end, permitting the refinement of results. At each temperature,
the parameter space is sampled uniformly, with efficiency depending, among other
factors, on the ranges of variability selected for fitted parameters. They may differ
by orders of magnitude, rendering the sampling difficult. To alleviate the problem,
we contract the parameter space by applying a logarithmic transformation. If the
lower and upper bounds of parameters are denoted by N -component vectors L

and U , each point x from the interval [L, U ] can be transformed into ξ and vice
versa

ξ = ln(x− L + c), x = eξ + L− c. (13)

An arbitrary positive constant c is added to avoid calculating ln(0) when x = L.
As a result, the sampling of the contracted parameter facilitates locating promising
areas. The disadvantage of the SA algorithm comes from the fact that to find the
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global minimum, adequate sampling of the parameter space is necessary, which
implies large numbers of generated points, and hence long execution times.

The minimization of the error function permits the determination of the
cross-relaxation rates for all spins in the system. The next required step is the
conversion of the relaxation matrix elements into corresponding internuclear dis-
tances. This procedure works well only for isolated spin pairs. When local dy-
namics becomes important, the above relations give only apparent distances, there-
fore it is important to estimate distance errors correctly. Finally, thus obtained
distances are used as restraints in molecular dynamics simulations, leading to a
three-dimensional structure of the studied compound.

It is worth noting that acquisition of full buildup curves is essential for a
successful reconstruction of the relaxation matrix [24–26]. The effects of spin
diffusion seen at long mixing times permit to resolve ambiguities from the analysis
of usually undetermined systems.

3. Software parallelization and performance

Analysis of large spin systems leads to excessively long execution times.
Modern processors are characterized by high numbers of floating point operations
(FLOPS) per unit time, but the analysis of a moderately complex spin system
with adequate sampling of the parameter space requires months to years on a
monoprocessor computer. Hence, it is necessary to distribute the computational
task among many processors, trying to achieve maximal time gain by way of their
organization and synchronization. Our program has been developed on an SGI
Origin 2000 supercomputer, a shared memory system equipped with 64 mixed
processors (40×R12K at 300 MHz and 24×R14K at 500 MHz) with the crossbar
architecture. The software has been parallelized under OpenMP [27], using the
coarse-grained parallelism, assuring a quasi-linear Amdahl speedup factor for the
SA algorithm. The search trajectory in the parameter space was divided equally
among the processors, using a first-come-first-served queue system. Individual
results are pooled after each iteration and the best candidate becomes the starting
point for the next iteration. Our tests concerned the compounds currently studied
in our laboratory, whose description will appear elsewhere. A typical sample of
the results in terms of execution times and speedup factors is presented in Fig. 2
(see captions for details). Single-processor execution times depend on the number
of variables N according to the well-known N3 relation.

Originally, the program was developed under the UNIX operating system.
The code performs best on shared-memory machines. On the Intel platform, the
parallelization can no longer offer a significant advantage, since a single memory
bus creates bottlenecks in memory access. However, since the structure of the
software is modular, porting the code to a distributed-memory machine, such as
a Linux cluster, should pose no particular problem. This work, as well as the
parallelization under message passing interface (MPI), is underway.
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Fig. 2. Execution times and speedup factors for a test system of 52 spins in 1 state.

The benchmarks were performed on SGI Origin 2000 computer, using a homogeneous

set of R12K processors at 300 MHz. The system is represented by a 52×52 matrix with

703 independent variables. This number reflects solely the unique cross-relaxation rates

(the duplicates, found in groups of equivalent spins were excluded). The execution times

were normalized by dividing the result of the UNIX system “time” command (the sum

of the user and system CPU time) by the number of processors Nproc, by the number of

iterations, and by the number of mixing times used in each data set. The dashed line

shows the ideal linear speedup. The degree of parallelization of the code is 99.7%, as

determined from the fitting to the Amdahl law.

4. Conclusions

ANAGRAM permits analysis of multimolecular and multistate spin systems,
taking into account the effects of local mobility, spin equivalence, finite exchange
rates, and spectral overlap. Future versions of the software will permit to an-
alyze results of experiments involving heteronuclear NOEs. Also, anisotropy of
molecular reorientations will be included.
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