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Fluorescence Decay Heterogeneity Model

Based on Electron Transfer Processes

in an Enzyme–Ligand Complex
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The models are described for complex fluorescence decay of tyrosine in

proteins involving continuous distribution of fluorescence lifetimes and elec-

tron transfer processes. We introduce the analytical decay function with

a power-like term, which provides good fits to highly complex fluorescence

decays. Moreover, the power-like term in the proposed decay functions is a

manifestation of so-called Tsallis nonextensive statistics and is suitable for

description of the systems with long-range interactions, memory effect, as

well as with fluctuations of the characteristic lifetime of fluorescence. The

proposed decay functions were applied to analysis of fluorescence decays

of tyrosine in a protein, i.e. the enzyme purine nucleoside phosphorylase

from E. coli, free in aqueous solution and in the complex with formycin A

(an inhibitor) and orthophosphate (a co-substrate), and demonstrated that

both models reflect the enzyme−ligand interactions. Direct measure of het-

erogeneity of the enzyme systems is provided by a variance of fluorescence

lifetime distribution. The possible number of deactivation channels and ex-

cited state mean lifetime can be easily derived without a priori knowledge

of the complexity of studied system.

PACS numbers: 33.50.–j

1. Introduction

There are many natural physical processes which follow a power-like distri-
bution. The power law behavior is commonly observed in a variety of systems
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ranging from cosmology, fluids, to econophysics and social science, among others
[1, 2]. In particular, complex systems characterized by long-range correlations,
long-range microscopic memories, or fluctuations of some parameters present in
the system, display a non-exponential behavior. They can be described in terms
of nonextensive statistics introduced in 1988 by Tsallis [3]. In this approach a
power-like formula (one parameter q-exponential function)

et
q ≡

[
1− (1− q)

t

τ

] 1
1−q q→1−→ et

q=1 ≡ exp
(
− t

τ

)
(1)

is a generalization of the Boltzmann–Gibbs function, replaces the usual exponen-
tial function, and reproduces it for q → 1.

Biological systems, particularly biomolecules (e.g. proteins and their com-
plexes with ligands) can be treated as good examples of complex systems, which
exist in a large variety of energetic states corresponding to different conforma-
tions [4]. Therefore proteins are ideal samples to study relaxation in complex
systems such as alloys of the disordered energetic states.

In this paper, addressing the decay of singlet excited states of proteins, we
display ways of modeling such systems, leading to a long-time power-like behavior.
We show that the underlying reason for non-exponential decay of protein fluores-
cence is a distribution of a characteristic lifetime of the fluorophore and excitation
transport processes. The latter was previously applied in studies of excitation
transport in solids [5]. In this paper, we propose a model based on the electron
transport and show its applicability to description of fluorescence decays in protein
systems.

We start with a brief description of our present knowledge, relevant to in-
terpretation of non-exponential relaxation of biological molecules.

1.1. Previous models

Decays of fluorescence intensity of proteins often exhibit a non-exponential
behavior, the origin of which is usually interpreted in terms of multiple (ground
state) conformations (i.e. rotamer model) or excited-state processes (i.e. dipolar
relaxations) and described by a multi-exponential function [6]. The rotamer model
is based on the interpretation of each discrete exponential component with the
aid of a particular protein conformation, including dynamic equilibrium between
rotational isomers of tryptophan [7] and tyrosine [8, 9] residues. However, there
are many difficulties with the application of this model, e.g. X-ray or NMR data do
not indicate multiple occupancy of rotameric states [10]. There are many proteins
for which it is difficult to build a molecular model with the alternative orientations
of fluorophores. Also the case of multitude conformational substates in proteins
with possible time-dependent interconversions between them [11], which are not
slow in comparison with fluorescence lifetimes, cannot be properly described by
this model. Even for the indole moiety in solution, it is difficult to find unique
conformations corresponding to discrete fluorescence decay components [12, 13].
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Also studies on the 1La and 1Lb transitions of tryptophan do not lead to an
explanation of protein fluorescence heterogeneity [14, 15].

The second model mentioned above involves the excited state processes
and assumes that the dipole moment associated with an excited fluorophore
changes the direction and magnitude after electronic excitation. The mobile polar
molecules in close proximity to the fluorophore reorientationally relax, and their
relaxation occurs from many partially relaxed states. The relaxation processes
affect the kinetic of the decay and lead to a decay in a non-exponential form (i.e.
not properly described by a sum of exponential terms). All the foregoing suggest
that continuous lifetime distributions are more relevant models than a sum of dis-
crete exponential terms. There are many other cases, where distribution of decay
times is expected rather than the limited number of discrete decay times [16],
e.g. a fluorophore in a mixture of solvents, a case of co-existence of the range of
environments in solution, or in proteins with many fluorophore residues. In such
cases we should consider a more adequate model to describe complex fluorescence
relaxation linking the character of the decay law to the distribution of lifetimes
and/or excitation transfer process.

1.2. Lifetime distribution

Previous investigations indicate that a detailed analysis of the energy level
distribution in proteins is required for understanding the related relaxation pro-
cess in these systems. It is known that proteins exist in different energy levels
corresponding to different protein conformations, with allowance for transitions
between them. For such a system, the effective Hamiltonian H (describing the
transition between the i-th and j-th energy states, with coupling between them)
is the M ×M (Hij = Hji) matrix, where M is the number of states. The Hamil-
tonian contains excitation energies and nearest neighbor interactions, as well as
interaction between transition dipoles. The interactions between transition dipoles
produce additional perturbation terms, which affect H. Moreover each physical
copy of the system is different, and, therefore, the Hamiltonian described above
should be studied in a statistical manner. When fluctuations are significantly
high so that it can be treated as a random component, properties of ensembles
of Hamiltonians can be studied in terms of random matrix theory (RMT) [17].
In particular, there are analytical method in this approach which allow one to
study such a random system. In the limit, where the matrix size becomes large, it
can be shown that the spectral properties are independent of the distribution for
individual matrix elements. Using the RMT approach, it has been shown that the
distribution P (Ci) of amplitude Ci for eigenvectors of H (in the limit of large M)
has the following form [18]:

P (Ci) =
1√

2π〈C2
i 〉

exp
(
− C2

i

2〈C2
i 〉

)
. (2)
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For our application we are interested in the distribution of the decay rate
σi = 1/τi, which is proportional to the probability C2

i of finding a single state i

in the composite state. Taking into account that P (σ)dσ = 2P (Ci)|dCi|, for
a complex system with N decay paths affecting the excited-state lifetime, the
distribution of rates P (σ) is given in the form of the gamma distribution [18],
with a mean value 〈σ〉 = N〈σi〉 = N/〈τi〉. Because P (τ)dτ/τ2 = P (σ)dσ and the
mean lifetime value τ0 = 1/〈σ〉, the corresponding distribution of lifetimes P (τ)
one can write in the form

PN (τ)dτ =
1

Γ
(

N
2

)
(

Nτ0

2

)(
Nτ0

2τ

)N
2 −1

exp
(
−Nτ0

2τ

)
dτ

τ2
(3)

which may result from relaxation of the fluorophore and/or its environment.
P (τ) is a continuous distribution of characteristic time scales in the con-

sidered system. It is worth noting that the gamma distribution is also predicted
by a maximum entropy method as the most expected distribution under certain
constrains [19]. Hence, taking into account the relaxation from many contributing
components, the fluorescence decay I(t) is determined by

I(t) = I0

∫ ∞

0

PN (τ) exp
(
− t

τ

)
dτ (4)

with normalization I0 = I(t = 0).
This leads directly to the decay function (see Refs. [18, 20] for details)

I(t) = I0

[
1− (1− q)

t

τ0

] 1
1−q

(5)

described by the mean value of the lifetime distribution (τ0) and one new parameter
of heterogeneity (q), defined as

q = 1 +
2
N

= 1 +
〈(σ − 〈σ〉)2〉

〈σ〉2 (6)

and describing the relative variance (Eq. (6)) of fluctuations of σ = 1/τ around
the 1/τ0 value. The mean decay time 〈t〉 is obtained directly from integration of
Eq. (5), and is given by

〈t〉 =
τ0

3− 2q
. (7)

Note that the power-like decay function is a manifestation of the Tsal-
lis q-exponential function and results directly from fluctuations of the param-
eter σ = 1/τ in the exponential formula [20]. Moreover, Eq. (5) corresponds
to a memory effect in the considered system. It stems from the rate equation
dN(t) = −(1/τ(t))N(t)dt (describing probability of emission a photon at a given
time t, by an excited residue at t = 0) for linear time-dependence of the lifetime
parameter [19] in the form τ(t) = [τ0 − (1− q)t]/q.
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Since protein structural fluctuations occur in the nanosecond-picosecond
time scale [21, 22], these rapid fluctuations would affect fluorescence lifetime val-
ues. Therefore, fluorescence decay is a good experimental tool for studies of protein
dynamics, including thermal fluctuations and protein–ligand association.

1.3. Excitation transport

It is well known that in proteins excitation transport occurs through vari-
ety of paths (channels), e.g. electron transfer (and/or hole transfer) or fluores-
cence resonance energy transfer (FRET) from excited tryptophan and/or tyrosine
residues. Since no indication for energy acceptors for FRET in proteins have been
found [23], we consider fluorescence decay modeling which involves electron trans-
port processes. The general idea is that the electron of an excited fluorophore can
migrate (with a transfer rate ν(t)) to some excited states different from the initial
one. One example of such a process in proteins is electron transport to a neigh-
boring quenching residue. Many possible electron acceptors have been proposed,
such as a peptide bond carbonyl group [23] (due to appearance of a net positive
charge on the peptide bond carbonyl carbon [24]) or amino acid residues involved
in π−π stacking interaction. Since almost all amino acid side chains are more or
less effective quenchers [10, 25], the proposed model is applicable to proteins in
general.

We start with the rate equation for excitation transport (with natural flu-
orescence lifetime τ0), across a medium containing a relative concentration c of
electron acceptors, given by the rate equation [26]

dI(t)
dt

= −cν(t)I(t)− 1
τ0

I(t). (8)

The stochastic character of non-stationary excitation transport can be ac-
counted for by the time-dependence of the transfer rate [5]

νij(t) =

{
ν0 exp(−εij/kT )[(1− ω) + ω exp(−εijt/Γ )], εij > 0

ν0, εij ≤ 0
(9)

where εij = Ei −Ej (Ei is the energy of site i), Γ is a factor associated with the
density of the excited states, and the coefficient ω describes the noise filtration in
diffusion processes.

This detailed balance implies that the forward rates connecting a pair of
sites are related by the Boltzmann factor. The exponential relaxation can be
explained in terms of a random walk, i.e. in terms of the number of distinct
sites, S(t), visited by a random walker in equivalent media, since the transfer
rate is related to S(t) by the relation ν(t) ∝ dS(t)/dt. In particular the white
noise with low frequency filtration implies that relaxation starts from S(t=0) = 0
and tends asymptotically to S(t) ∝ t behavior (Fig. 1). Consequently, ν(t) tends
to a constant value and leads to a non-stationary process with exponential re-
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Fig. 1. Time dependence of S(t) for the white noise with low frequency filtration defined

by S(t) = 2(D −DL)t + 2DLΓ/ε − (2DLΓ/ε) exp(− ε
Γ

t), and Sε/(2ΓDL) plotted as a

function of tε/Γ for different values of coefficient ω = D/DL (see Ref. [5] for details).

laxation [5]. This, in turn, implies that, when relaxation takes place, the higher
energy sites become increasingly difficult to attain, so that the number of accessible
sites decreases with time [27].

The energy averaged transfer rate can be formally derived from integration
of Eq. (9) over energies and is equal to

〈ν(t)〉 = ν0(1− ω) +
ν0ωΓ

Γ + kT t
. (10)

Taking into account the above transfer rate, the rate equation for excitation
(Eq. (8)) leads to

I(t) = I0 exp
(
− t

τ1

)(
1 +

1
γ

t

τ2

)−γ

, (11)

where in our case

τ1 =
1

1/τ0 + cν0(1− ω)
, τ2 =

1
cν0ω

, γ =
1

q − 1
, and q = 1 +

kT

Γ
τ2.

The power-like term in the above distribution can be treated as a yet another
example of the Tsallis q-exponential function. Note that the power-like term in
Eq. (11) can be accounted for time hierarchy in the considered process. Consid-
ering, for simplicity, that the excited states Ei = iε are to be reached in the i-th
step of the hierarchy level, the transfer rate is given by exp(−Ei/kT ) = βi, where
β = exp(−ε/kT ). Moreover, the states are usually distributed exponentially [25]
(as exp(−Ei/kT0) = ηi, where T0 describes state density). Thus the state density
is given by η = exp(−ε/kT0). According to Blumen et al. [28], taking into account
excitation from all steps,
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I(t) =
1− η

η

∞∑

i=1

ηiβi exp(−tβi). (12)

Asymptotically, for the long time this lead to

I(t) ∼ t−γ , (13)

where

γ = 1 +
ln η

ln β
= 1 +

T

T0
.

2. Experimental

2.1. Materials

N-acetyl-L-tyrosinamide (NATyrA) was purchased from Aldrich Chemi-
cal Company, Inc. (Mileaukee, WI, USA), and used without further purifica-
tion. Formycin A (FA), mono- and disodium phosphate, and N-2-hydroxyethyl-
piperazine-N′-2-ethanesulfonic acid (Hepes) were products of Sigma Chemical Co.
(St. Louis, MO, USA). The latter was used as a buffering medium at 50 mM
concentration, with pH value adjusted to 7 by addition of concentrated sodium
hydroxide (NaOH) from Merck (Darmstadt, GFR). Purine nucleoside phosphory-
lase (PNP; purine nucleoside: orthophosphate ribosyltransferase, EC 2.4.2.1) from
E. coli, a product of the deoD gene, was prepared as described earlier [29].

2.2. Time-resolved fluorescence measurements

Fluorescence intensity decays were obtained by time-correlated single
photon-counting (TCSPC) measurements of fluorescence, performed on an IBH
time-resolved spectrofluorimeter (IBH Consultants, Scotland, UK) (see for fur-
ther details Ref. [19]) at 25◦C in the presence of natural (0.25 mM) concentration
of oxygen. The latter is too low to affect tyrosine fluorescence intensity decay,
as was previously shown by measurements of bimolecular oxygen-quenching con-
stants and fluorescence lifetimes for L-tyrosine, NATyrA, and tyrosine-containing
peptides and proteins [30]. Typical fluorescence intensity decay (I) data were
convoluted with the instrument response and fitted to models using interactive
convolution. The quality of fit was evaluated by the structure observed in the
plots of residuals normalized to error, i.e. residual = Iexperimental−Itheoretical√

Iexperimental+Itheoretical
, and

by the reduced chi-square value.

3. Results

The power-like decay function provides a good fit to complex fluorescence
decays by linking the character of the decay law to the distribution of lifetimes [19].
The acetyl-amide form of L-Tyr (NATyrA), which exists exclusively in the neutral
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form in aqueous solution at neutral pH, is a good model compound for phenolic
residues in a polypeptide chain. NATyrA exhibits a complex fluorescence decay
usually not described by a single exponential term [8, 9]. Figure 2 shows the
fluorescence decay for NATyrA in aqueous solution. Bad fits were obtained for the
single as well as double exponential model, as judged by residuals (χ2

R = 4.93 and
1.85, respectively) [19]. In contrast, a very good fit (χ2

R = 1.20) was obtained with
the power-like decay function, and q = 1.07± 0.02, which leads to the decay path
value N ≈ 285, and may reflect free fluorophore in solution. Although applicability
of the multi-exponential models are not physically justified, the resultant mean
decay time (〈t〉 = 1.63 ± 0.05 ns) for NATyrA fluorescence is in agreement with
that obtained with the power-like model (〈t〉 = 1.53± 0.08 ns).

Fig. 2. Fluorescence intensity decay (λexc/λem 275/320 nm) of NATyrA shown by

circle. The solid and dashed curves represent the theoretical values of the best fits

of Eq. (5) (with fitted parameters q = 1.07 ± 0.02, τ0 = 1.32 ± 0.03 ns and 〈t〉 =

1.53± 0.08 ns), and single-exponential function (with τ = 1.63± 0.01 ns), respectively.

E. coli purine nucleoside phosphorylase (PNP) and its ternary complex with
FA (inhibitor) and phosphate (natural co-substrate) in aqueous solutions was cho-
sen as a good examples of highly complex fluorescence intensity decays resulting
from excitation of tyrosine residues in the enzyme, the N(1)–H and N(2)–H tau-
tomeric forms of FA, free in solution (see Ref. [31] and literature cited therein),
and the latter bound in the active site of the enzyme [29, 31]. Fluorescence decay
of such a complex system cannot be properly described using a single-exponential
model [29], due to many interacting fluorophore residues, which prevent consider-
ation of the individual decay times [16]. In addition, the kinetics of fluorescence
decay is affected by FRET, i.e. the resonance interaction by weak (Förster) cou-
pling between transition dipoles of emission and absorption of protein tyrosine
residues (Tyr160) and the N(2)–H form of FA bound by the enzyme [32]. More-
over, crystal data and previous investigations (see Ref. [32] and literature cited
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therein) indicate that both the base moiety of FA and the phenol ring of Tyr160
are involved in π−π interactions with the aromatic residue of Phe159. The latter
is located between FA and Tyr160, almost perpendicularly to the base moiety of
FA from one side and to the phenol ring of Tyr160 on the other side. Such π−π

stacking implies involvement of higher order multipole couplings, as well as ex-
change interactions. Therefore, a model involving the excitation transport process
seems to be more appropriate than a one considering a sum of the individual de-
cay components. Indeed, we observed that the decay function given by Eq. (11)
provides a good fit of the fluorescence decay data of both the PNP enzyme free
in solution (Fig. 3) and the PNP–FA–Pi complex (Fig. 4) with χ2

R = 1.02 and
1.1, respectively, and a high accuracy of the fitted parameters (see captions in
Figs. 3 and 4). By contrast, poor fits were obtained with the single-exponential
model (χ2

R = 6.28 and 2.64), somewhat improved with the double-exponential
model (χ2

R = 1.02 and 1.32), but the residuals (Figs. 3 and 4) confirm that the
decay function (Eq. (11)) is still better than the double-exponential function [29].
Furthermore, the increasing number of exponential terms in the multi-exponential
model is justified only by the resultant improvement of the goodness of fit, without
physical interpretation of the decay components.

Fig. 3. Fluorescence intensity decay (λexc/λem 275/310 nm) of E. coli PNP (free in

aqueous solution) shown by circles. The solid and dashed curves represent the theoretical

values of the best fits of Eq. (11) (with fitted parameters τ1 = 3.51 ns, τ2 = 0.1 ns and

γ = 0.33), and single-exponential function (with τ = 2.3 ns), respectively.

These results show that, due to the complex formation, the natural fluo-
rescence lifetime of the enzyme–ligand complex is shorter than that of the free
protein. In contrast, the lifetime τ2 associated with electron transfer phenomena
did not change significantly, which further supports hypotheses that the excitation
transfer occurs between residues involved in the π−π stacking.
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Fig. 4. Fluorescence intensity decay (λexc/λem 275/310 nm) of E. coli PNP in its

ternary complex with formycin A and phosphate shown by circles. The solid and dashed

curves represent the theoretical values of the best fits of Eq. (11) (with fitted parameters

τ1 = 1.88 ns, τ2 = 0.13 ns and γ = 0.44), and single-exponential function (with τ =

1.46 ns), respectively.

It is worth noting that the decay of fluorescence of the PNP ternary complex
may be also fitted by a power-like function (Eq. (5)) with 〈t〉 = 1.49 ± 0.04 ns
and q = 1.105 ± 0.001, which leads to a decay path value N ≈ 19. This is in
contrast to the fluorescence decay of the PNP enzyme free in aqueous solution
(data not shown), described by a power-like function with 〈t〉 = 3.13±0.05 ns and
q = 1.25 ± 0.02, i.e. with N ≈ 8, reflecting the fact that the complex formation
leads to an increase number of the relaxation paths associated with enzyme–ligand
interactions.

4. Conclusions

We show here that the application of continuous lifetime distributions for in-
terpretation of complex fluorescence decays are more valid than multi-exponential
models, where the interpretation of individual components is incorrect, and the
definition of parameters is unclear. A good alternative to a multi-exponential
function may be the power-like decay function obtained directly from statistical
treatment of the fluorescence decays based on the gamma-distributed fluctuations
of the fluorescence lifetime. When the heterogeneity parameter q → 1 (the number
of decay paths N →∞), i.e. lifetime distribution becomes a δ function, a power-
like function leads to a mono-exponential function describing an ideal decay [19].

Since the power-like function (Eq. (5)) is determined by only two parameters
(the mean value of lifetime distribution and relative variance), it is advantageous
for multi-exponential models by increased efficiency of fitting of the complex flu-
orescence decays. The importance of the latter has been verified for a wide range
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of cases [19], and suggests that its application in on-line analysis of the fluores-
cence lifetime imaging (FLIM) data should significantly speed up refinement of the
lifetime images and improve their contrast and quality, similarly to that observed
with stretched exponential function [33].

As it was already stated, one of the possible origin of fluorescence decay
heterogeneity are electron transfer processes. In that case fluorescence intensity
decays may be described by an equation containing an exponential function mul-
tiplied by a power-like term (Eq. (11)) being yet another example of the Tsallis
q-exponential function. The latter can be accounted for time hierarchy in the
considered processes, and relates the power index γ with density of excited states.
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