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The behavior of the structure amplitude is analyzed in terms of the

harmonics of a modulation function for the case of one-dimensional longitu-

dinal displacive modulation. This modulation function is given by a finite

series of N sine functions. It turns out that: (1) for the large values of the

amplitudes of the modulation function the structure amplitude tends to zero

for the arbitrary values of the order m of the satellite reflections; (2) for cer-

tain values of the amplitudes of the modulation function the modulus of the

structure amplitude assumes its maximum value and (3) for the latter case

the intensity of an arbitrary satellite reflection is a function of the intensities

of both the closest main reflection and the intensities of the finite set of the

neighbor satellite reflections.

PACS numbers: 61.44.Fw, 61.10.Dp

1. Introduction

Lattice periodicity (translational symmetry) is a property that is considered
as an essential concept in crystallography. For the aperiodic structures an em-
bedding procedure into the higher-dimensional space is applied in order to recover
the periodicity of these structures, the latter property makes it possible to con-
struct the corresponding (super)space symmetry groups. In recent decades more
and more modulated crystal phases have been observed in nature. Progress in the
symmetry description of modulated structures with the aid of higher-dimensional
crystallographic symmetry groups has been obtained as a result of many impor-
tant papers (e.g. [1]). In the case of the structure with the displacive modulation

(917)
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the positional vector of the µ-th atom Rµ can be expressed as periodic functions
of the components qa · r̂µ of the modulation vector, where a = 1, . . . , d (d being
the modulation dimension) as follows:

Rµ = r̂µ + uµ(q1 · r̂µ, . . . , qd · r̂µ), (1)

where r̂µ = p + rµ and p is a lattice vector and rµ is a position vector of µ-th
atom in an elementary cell, uµ is the modulation function of the µ-th atom with
the components

uµα(t + q · rµ) =
N∑

n=1

u(µ)
αn sin[n(t + q · rµ) + ϕµα(n)], (2)

t = q · p and µ enumerates the independent atoms, N is the number of harmonics,
α = 1, 2, 3, whereas ϕµα(n) is a phase parameter, which depends on µ and n.

In the case of one-dimensional modulation the modulation vector q is related
to the diffraction pattern in the following way:

H = 2πha∗ + 2πkb∗ + 2πlc∗ + mq, (3)

where a∗, b∗, c∗ are the reciprocal-lattice vectors of the basic structure. (We use
the following scalar product between basic vectors: a · a∗ = b · b∗ = c · c∗ = 1.)
In the diffraction pattern of such a modulated phase, one can distinguish the main
reflections (for which m = 0) and satellites (for which m 6= 0). The satellites
appear in the points of the reciprocal lattice described by Eq. (3). In the model
under consideration the modulation function is a periodic function for which a
harmonic approximation is used (Eq. (2)). The crystals with the diffraction vector
defined in Eq. (3) need for their description 3+1 basic vectors in the reciprocal
lattice. De Wolff, Janssen, and Janner (1981) present the list of (3+1)-dimensional
superspace groups describing the incommensurate crystal structures with one-
-dimensional modulation.

In Ref. [2] there is studied the sensitivity of X-ray diffraction to the struc-
tural differences in an incommensurate structure between the sinusoidal and soli-
ton regime. The case of the small amplitudes of the expansion of the displacive
modulation function as well as the one-harmonic approximation of the modulation
function has been studied in [3]. In Refs. [4, 5] Aramburu et al. have studied for
Rb2ZnCl4 the temperature dependence of intensities of both the main reflections
and the satellite reflections. Böhm [6] has studied the behavior of the rectangular
and triangular modulations to compare their effect with the sinusoidal modulation.

The aim of the present paper is to study the behavior of the modulated
structure amplitude from the point of view of the monotonicity of its modulus
for the case of one-dimensional longitudinal displacive modulation. The harmonic
expansion of a modulation function is here assumed with the following conditions
concerning the phases as well as the amplitudes of the modulation function:
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∀n, µ ϕµα(n) = ϕα, (4)

∀µ u(µ)
αn = uαn. (5)

Under the above conditions the modulation function has the form

uα(t + q · rµ) =
N∑

n=1

uαn sin[n(t + q · rµ) + ϕα]. (6)

Under the assumption of a displacive modulation the function describing the prob-
ability that an atom is in a modulated position, can be equal to either 0 or 1. With
such a homogeneous probability distribution the formula of the modulated struc-
ture amplitude F (H,m) for the modulation function given by Eq. (6) has the form
[7–10]:

F (H,m) =
∑

µ

fµ(H) exp [i(H −mq) · rµ]

×
∫ 2π

0

exp (imx) exp [iH · u(x)]dx, (7)

where x = t + q · rµ. The above equation can be rewritten in the following form:

F (H,m) =
1
2π

∑
µ

fµ(H) exp [i(H −mq) · rµ]

×
∫ 2π

0

exp (imx) exp [i
N∑

n=1

zn sin(nx + ξn)]dx, (8)

where

zn = [(H1u1n)2 + (H2u2n)2 + (H3u3n)2 + 2H1u1nH2u2n cos(ϕ1 − ϕ2)

+2H1u1nH3u3n cos(ϕ1 − ϕ3) + 2H2u2nH3u3n cos(ϕ2 − ϕ3)]
1
2 , (9)

sin ξn =
1
zn

3∑
α=1

Hαuαn cosϕα, (10)

cos ξn =
1
zn

3∑
α=1

Hαuαn sin ϕα, (11)

H1 = 2πh + mq1, H2 = 2πk + mq2, H3 = 2πl + mq3, (12)

n = 1, . . . , N, d = (d1, . . . , dN ), ξ = (ξ1, . . . , ξN ) and uαn are defined by Eq. (6).
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Another form of the structure amplitude of the modulated structure can be
obtained by integrating Eq. (8) over x. This procedure leads among others to the
summation of products of the Bessel functions

F (H,m) =
∑

µ

fµ(H) exp [i(H −mq) · rµ]
∑

d ∈ ZN

Jd1(z1) . . . JdN
(zN )

× exp (id · ξ)δ(m +
N∑

l=1

ldl, 0). (13)

It is easy to see that the structure amplitude given by Eq. (13) does not vanish
under the following condition:

m +
N∑

l=1

ldl = 0. (14)

This paper is organized as follows: in Sect. 2 the analysis of Eqs. (8) and
(13) describing the displacive modulated structure amplitude expressed by the
Bessel functions is carried out. Two problems among others are discussed: (1) an
asymptotic expansion of the modulated structure amplitude for high values of zn,

(2) a relationship between the maximum value of the module of the structure
amplitude and the values of the amplitudes of the modulation function. In Sect. 3
one-harmonic modulation is considered. Some computations as well as the method
of a stationary phase are presented in Appendices.

2. Analysis of the formula for the modulated structure amplitude

Let us consider an asymptotic expansion of the modulated structure ampli-
tude (Eq. (8)) for high values of zn. Because zn are related to uαn by Eq. (9),
one can say that this case concerns the behavior of the structure amplitude at
large values of the amplitudes of the expansion of the modulation function. It is
assumed in this model that these amplitudes should not be too high because the
crystal structure itself has to be maintained [6]. However, it remains still interest-
ing whether the modulus of the structure amplitude assumes a maximum value in
the physical interval of values of the amplitudes of the modulation function. At
this moment we know only that the modulus under consideration increases from
zero with zn at the very low values of zn. Therefore the next step in our consid-
erations is to study the behavior of this modulus as a function of zn for higher zn

(asymptotic expansion).

2.1. Asymptotic expansion of the modulated structure amplitude
for large values of zn

As according to Eq. (9) zn is a function of H, the structure amplitude (see
Eq. (8)) can be rewritten for a given satellite order m as follows:
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F (z1, . . . , zN ;m) = S(H,m)g(z1, ..., zN ; m), (15)

where

S(H, m) =
∑

µ

fµ(H) exp [i(H −mq) · rµ], (16)

g(z1, . . . , zN ;m) =
∫ 2π

0

exp (imx) exp

[
i

N∑
n=1

zn sin(nx + ξn)

]
dx (17)

and zn is defined by Eq. (9). From the last two formulas it is easy to see that only
the factor g undergoes the procedure of the asymptotic expansion.

Let us assume that za → ∞ (a = 1, . . . , N). The method of a stationary
phase (see Appendix A.1) brings us to the following formula:

g(z1, . . . , za, . . . , zN ; m) '
za→∞

1
a

√
2π

za

× exp


i


za + (2m− a)π/4−mξa/2a +

N∑

n6=a

znΦn(xa)





 , (18)

where

xa = (π − ξa)/2a, (19)

Φn(x) = sin(nx− ξn). (20)

Parameter za is a function of a-th amplitude ua, of wave vector H and of angles
ϕ1, ϕ2, ϕ3. For fixed H parameter za goes to infinity with the a-th amplitude of
the modulation function. Thus the asymptotic form of the structure amplitude is

F (z1, . . . , za, . . . , zN ; m) '
uαa→∞

∑
µ

fµ(H) exp [i(H −mq) · rµ]

×1
a

√
2π

za
exp {i[za + (2m− a)π/4−mξa/2a] +

N∑

n6=a

znΦn(xa)}. (21)

As it follows from the above formula, one can say that if the amplitudes of the
modulation function go to infinity, then the modulus of the structure amplitude
goes to zero. Thus

|F (z1, . . . , za, . . . , zN ;m)| →
uαa→∞

0. (22)

On the other hand, if all the amplitudes of the modulation function go to
zero, then the module of the structure amplitude assumes the following form (see
Appendix A.3):
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|F (z1, . . . , za, . . . , zN ;m)| →
uα1,...,uαN→0

|S(k, m)| δm,0. (23)

Let us note that for m = 0 we deal with the nonmodulated structure, whereas
for m 6= 0 the modulus of the structure amplitude is equal to zero (δm,0 is the
Kronecker delta).

2.2. The maximum value of the modulus of the modulated structure amplitude

As the structure amplitude goes to zero both for low and large values of the
amplitudes uαn of the modulation function, one can expect that for certain uαn

values the modulus of the structure amplitude assumes its maximum value. To
find this maximum one has to differentiate F (see Eq. (15)) with respect to zn and
solve the following equations with respect to zn:

∂F

∂zn
= 0,

where n = 1, . . . , N . As a result of this differentiation and taking into account the
following identity:

sin v =
1
2i

(eiv − e−iv ), (24)

one obtains the N equations (on zn) which correspond to this maximum

e2iξ1g(z,m + 1) = g(z, m− 1),
...

e2iξN g(z,m + N) = g(z,m−N), (25)

where z = (z1, . . . , zN ). Let us denote by z0 one of the solutions of the above
system of equations. Let us note that the number of such solutions is infinite. Let
us try to find in this set of solutions a physical solution for the one-harmonic case.

The structure amplitude for z = z0 obeys the relation

F (z0, m + a) = e−2iξa S(H,m + a)g(z0, m− a), (26)

where F (z, m) = S(m)g(z,m). Thus from the above relation one obtains the
following recurrence formula:

F (z0,m + a)
F (z0,m− a)

=
S(H,m + a)
S(H,m− a)

e−2iξa (27)

for a = 1, . . . , N. The general solution of this recurrence equation assumes the
following form (see Appendix A.2):

F (z0, 2jm + i) =
m∏

l=1

S(H, 2jl + i)
S(H, 2jl − 2j + i)

exp(−2iξj)F (z0, i), (28)

where m > 0, i = 0, . . . , 2H − 1; H = 1, . . . , N ; j = 1, . . . , N ; m = H, H + 1, . . .

Thus the structure amplitude F (z0, 2jm + i) is expressed here by the finite series
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of the structure amplitude F (z0, 0), . . . , F (z0, i). In order to illustrate the above
results let us consider in the next section an example.

3. Structure amplitude in the case
of one-dimensional modulation with one harmonic

In the one-harmonic case of the modulation function (the vector z has only
one component equal to z) the recurrence Eq. (27) assumes the following form:

F (z0,m + 1) =
S(H,m + 1)
S(H,m− 1)

e−2iξF (z0,m− 1), (29)

where z0 is a solution of the equation

e2iξg(z, m + 1) = g(z, m− 1). (30)

The solution of this recurrence equation is given by Eq. (28) and in this case has
the form (for m > 0):

F (z0, 2m) =
S(H, 2m)
S(H, 0)

e−2iξF (z0, 0), (31)

F (z0, 2m + 1) =
S(H, 2m + 1)

S(H, 1)
e−2iξF (z0, 1). (32)

Thus the sequence of the structure amplitudes is here determined by two values:
F (z0, 0) (for the main reflection) and F (z0, 1) (for the first satellite reflection).
Next the physical values of the amplitudes of the modulation function will be
found for which the above equations are true.

For the case of one-dimensional modulation function with one harmonic
(modulation along the X axis parallel to the vector a) the amplitude of the mod-
ulation function is

u = au (33)

and we find that

z = H1u, (34)

where H1 = 2πh + mq. Thus the modulated structure amplitude for the main
reflection and for the first satellite reflection (m = 1) is expressed, respectively, as
follows:

F (z, 0) = S(H, 0)J0(4π2hu), (35)

F (z, 1) = −S(H, 1)J1 [2π(2πh + q)u] exp(−iξ). (36)

Above the relation J−m(z) = (−1)mJm(z) has been used.
Differentiating Eq. (13) (in this case N = 1) one obtains the condition for

extremum, i.e. the equation on u corresponding to this extremum
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∂F (z, m)
∂u

= S(H,m)(−1)m exp(−imξ)2π(2πh + mq)

×J ′m[2π(2πh + mq)u] = 0. (37)

The solutions of the above equation on u are given by the zeros of the derivative
of the Bessel function. These zeros are approximated by the following sequence:

u(s) =
4s + 2m + 1
8(2πh + mq)

, (38)

where s represents an arbitrary integer and covers the infinite number of solu-
tions. One can expect that some of these solutions have physical meaning. The
fundamental limitation of these amplitudes of the modulation function is that they
should be significantly smaller than the size of the elementary cell. To fulfill this
condition one has to fit properly the values of the parameters q, m, h, and s in
Eq. (39). Let us note that in the above formulae the approximation was made to
take the derivatives of the Bessel functions according to the relation (e.g. [11]):

J ′m(x) = −
√

2/π sin[x− (2m + 1)π/4]. (39)

Thus the zeros of J ′m(x) are equal to x = πs + (2m + 1)π/4.
Taking into account that u0 depends on m, one can find that

u0 =
4s + 2m + 1
8(2πh + mq)

→
m→∞

1
4q

(40)

and

u0 =
4s + 2m + 1
8(2πh + mq)

→
m→0

4s + 1
16πh

. (41)

As it follows from the above relations and taking into account the high order m

of satellite reflections, one comes to the conclusion that the amplitude u of the
modulation function becomes large for small values of the modulation parameter.
It means that this amplitude is not physical. On the other hand, for low m one
can always find a physical value of u properly fitting values s and h.

3.1. Physically allowed amplitudes u(s) of the one-harmonic
modulation function. Examples

We show below that there always exist such values of the parameters q,m, h,
and s for which u(s) have the physical meaning. It is well known from the physical
point of view that the amplitude of the modulation function is bounded. Let us
assume that this amplitude is lower than 1 Å. Taking into account that the lattice
parameters in the typical crystals are of the order of 10 Å one can say that in
the relative units the maximal amplitude u(s) for fixed s and m has to obey the
following normalization condition:
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u(s) ≡
xs

2π(2πh + mq)
≤ 0.1, (42)

where xs are zeros of the derivatives of the Bessel functions

J ′m(xs) = 0. (43)

Equation (43) gives the exact values of u(s). The first five zeros xs (s =
1, . . . , 5) of J ′m(x) for m = 1, . . . , 6 are given below (Table I).

TABLE I

The zeros of the derivatives of the Bessel func-

tions J ′m(x).

m x1 x2 x3 x4 x5

1 1.841 5.331 8.536 11.706 14.864

2 3.054 6.706 9.969 13.170 16.348

3 4.201 8.015 11.346 14.586 17.789

4 5.317 9.285 12.682 15.964 19.196

5 6.415 10.520 13.987 17.313 20.576

6 7.501 11.735 15.286 18.637 21.931

To illustrate what was said above let us assume first that the modulation
parameter q = 0.1 and h = 3. In this case the amplitudes of the modulation
function for the first five zeros of the derivative of the Bessel function and for the
satellite reflections of the order from 1 to 6 are following (Table II).

TABLE II

The amplitudes of the modulation functions for q = 0.1 and h = 3.

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.015 0.045 0.072 0.098 0.125

2 0.075 0.056 0.083 0.110 0.137

3 0.035 0.067 0.094 0.121 0.148

4 0.044 0.077 0.105 0.132 0.159

5 0.053 0.087 0.115 0.142 0.169

6 0.061 0.096 0.125 0.153 0.179

Thus one can see that there exist a few values of the amplitude of the mod-
ulation function fulfilling the condition expressed by Eq. (42).

Let us assume now another five combinations of values of q and h: q = 0.1
and h = 4 (Table III), q = 0.1 and h = 5 (Table IV), q = 0.5 and h = 3 (Table V),
q = 0.5 and h = 4 (Table VI), q = 0.5 and h = 5 (Table VII).
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TABLE III

The amplitudes of the modulation functions for q = 0.1 and h = 4.

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.012 0.034 0.054 0.074 0.094

2 0.019 0.042 0.063 0.083 0.103

3 0.026 0.050 0.071 0.091 0.111

4 0.033 0.058 0.079 0.100 0.120

5 0.040 0.065 0.087 0.107 0.128

6 0.046 0.073 0.095 0.115 0.136

In this case exist more values of the amplitude of the modulation function,
lower than 0.1, than in previous example.

TABLE IV

The amplitudes of the modulation functions for q = 0.1 and h = 5

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.009 0.027 0.043 0.059 0.075

2 0.015 0.034 0.050 0.066 0.082

3 0.021 0.040 0.057 0.073 0.089

4 0.027 0.046 0.063 0.080 0.096

5 0.032 0.052 0.070 0.086 0.103

6 0.037 0.058 0.076 0.093 0.109

In this case only two values of the amplitude have no physical meaning, the
first one for m = 5 and s = 5, the second one for m = 6 and s = 5.

TABLE V

The amplitudes of the modulation functions for q = 0.5 and h = 3.

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.015 0.044 0.070 0.096 0.122

2 0.024 0.054 0.080 0.106 0.131

3 0.033 0.063 0.089 0.114 0.139

4 0.041 0.071 0.097 0.122 0.147

5 0.048 0.078 0.104 0.129 0.153

6 0.055 0.085 0.111 0.136 0.160

In this case there exists one more combination of m and s giving the physical
meaning, than in the case with q = 0.1 and h = 3.
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TABLE VI

The amplitudes of the modulation functions for q = 0.5 and h = 4.

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.011 0.033 0.053 0.073 0.092

2 0.019 0.041 0.061 0.080 0.100

3 0.025 0.048 0.068 0.087 0.106

4 0.031 0.054 0.074 0.094 0.113

5 0.037 0.061 0.081 0.100 0.119

6 0.042 0.066 0.086 0.105 0.124

In this case a lot of the values of the amplitude have physical meaning.

TABLE VII

The amplitudes of the modulation functions for q = 0.5 and h = 5.

m x1
2π(2πh+mq)

x2
2π(2πh+mq)

x3
2π(2πh+mq)

x4
2π(2πh+mq)

x5
2π(2πh+mq)

1 0.009 0.027 0.043 0.058 0.074

2 0.015 0.033 0.049 0.065 0.080

3 0.020 0.039 0.055 0.071 0.086

4 0.025 0.044 0.060 0.076 0.091

5 0.030 0.049 0.066 0.081 0.097

6 0.035 0.054 0.071 0.086 0.101

In this case only one value of the amplitude has no physical meaning (for
m = 6 and s = 5).

Equation (42) can be rewritten in the following form:

10xs

2πm
≤ q +

2πh

m
, (44)

which gives the general relationship between the allowed values of q and h for
the five zeros mentioned above and for the different m values. The corresponding
values are presented in Table VIII.

TABLE VIII

Relationship between the allowed values of q and h.

m 10x1
2πm

10x2
2πm

10x3
2πm

10x4
2πm

10x5
2πm

1 q + 2πh > 2.93 8.49 13.59 18.64 23.67

2 q + πh > 2.43 5.34 7.94 10.49 13.02

3 q + 2πh/3 > 2.23 4.25 6.02 7.74 9.44

4 q + πh/2 > 2.12 3.70 5.05 6.36 7.64

5 q + 2πh/5 > 2.04 3.35 4.45 5.51 6.55

6 q + πh/3 > 1.99 3.11 4.05 4.95 5.82
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In Table VIII the conditions are presented which concern the physical values
of the modulation parameter q for the arbitrary h (fulfilling the above inequalities).
Let us note that when — for instance — the limitation in Eq. (42) was twice lower
(it means 0.05 instead of 0.1), the physically reasonable value of the index h should
be greater than 6. One has to point out that the analogous way of thinking applies
also for three dimensions.

4. Discussion

As it was shown in Sect. 2, the structure amplitude of the displacively mod-
ulated structure tends to zero both for small and big values of the amplitudes
of the modulation function. Therefore a conclusion was made that there should
exist certain values of the amplitudes of the modulation function for which the
modulus of the structure amplitude assumes a maximum value. For such ampli-
tudes of the modulation function the intensity of an arbitrary satellite reflection
turns out to be a function of the intensities of both the closest main reflection
and the intensities of the finite set of the neighbor satellite reflections. In Sect. 3
the above considerations are applied to the case of one-dimensional modulation
with the modulation function consisting of one harmonic. The explicit form was
found of the amplitudes u(s) of the modulation function for which the modulus
of the structure amplitude assumes a maximum value. u(s) make a series indexed
by the arbitrary integer s. However, not all the amplitudes u(s) have a physical
meaning. The only physical values of u(s) have to fulfill — at least — the following
relation:

u(s) < 0.1. (45)

Our considerations concern the modulated structures with the continuous
modulation functions only. As the quasicrystals are concerned, they possess the
symmetry elements excluding the translational symmetry, although they reveal a
long-range ordering. Also their diffraction reflections can be described with the
aid of more than three integer indices. Therefore other methods are needed for
the quasicrystal structure analysis (e.g. [12]).

Appendix

A.1. Method of a stationary phase

Method of a stationary phase describes the asymptotic behavior of the os-
cillatory integral

∫

M

f(x)eizΦ(x)dx (A1.1)

for very large z. The above integral has the following value (if z →∞) ([13], p. 6):
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∫

M

f(x)eizΦ(x)dx =
(

2π

z

)n/2 ∑
xc

eπisgnH(xc)
eizΦ(xc)f(xc)√
| detH(xc)|

+O(z−n/2−1), (A1.2)

where xc are critical points of Φ(x): Φ′(xc) = 0, H(xc) is the Hessian of Φ at xc:

H(xc) =
[

∂2Φ
∂xi∂xj

(xc)
]

, (A1.3)

and n is the dimension of the manifold M . In the case under consideration n is
equal to unity and the manifold M is a circle.

A.2. Amplitudes

Equation (19) gives the recurrence relation between different structure am-
plitudes. Let us rewrite this equation (omitting the symbol z0) as follows:

F (m + H) = C(m,H)F (m−H), (A2.1)

where H = 1, . . . , N and

C(m, a) =
S(m + a)
S(m− a)

exp(−2iξa). (A2.2)

Thus we have N equations for amplitudes F. These equations are related between
each other. They have the form

F (m + 1) = C(m, 1)F (m− 1), (A2.3.1)

F (m + 2) = C(m, 2)F (m− 2), (A2.3.2)

...

F (m + N) = C(m,N)F (m−N). (A2.3.N)

From the first equation (A2.3.1) one obtains the following relations:

F (2m) =
m∏

l=1

C(2l − 1, 1)F (0), (A2.4.1)

F (2m + 1) =
m∏

l=1

C(2l, 1)F (1) (A2.4.2)

for m ≥ 1.
From the second equation (A2.3.2) one obtains the relations as follows:

F (4m) =
m∏

l=1

C(4l − 2, 2)F (0), (A2.5.1)
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F (4m + 1) =
m∏

l=1

C(4l − 1, 2)F (1), (A2.5.2)

F (4m + 2) =
m∏

l=1

C(4l, 2)F (2), (A2.5.3)

F (4m + 3) =
m∏

l=1

C(4l + 1, 2)F (3) (A2.5.4)

for m ≥ 2. And so on.
Finally from the last equation (A2.3.N) one obtains the following relations:

F (2Nm) =
m∏

l=1

C(2Nl −N, N)F (0), (A2.6.1)

F (2Nm + 1) =
m∏

l=1

C[2Nl − (N − 1), N ]F (1), (A2.6.2)

...

F (2Nm + 2N − 1) =
m∏

l=1

C[2Nl + (N − 1), N ]F (2N − 1) (A2.6.N)

for m ≥ N.

From the above solutions one can see that there exist 2N independent quan-
tities F :

{F (0), F (1), . . . , F (2N − 1)} , (A2.7)

by which any other structure amplitude can be expressed.

A.3. Expansion for small u

If the amplitude of modulation function approaches zero (in the one-
-harmonic case), then the structure amplitude assumes the form (e.g. [3]):

F (z,m) ∼
uα1→0

S(H,m)(−1)m exp(−imξ)
(πHuα1)m

Γ (1 + m)
, (A3.1)

because the expansion of the Bessel function for m fixed and u → 0 is given by [11]:

Jm(uα1) ∼
uα1→0

(uα1
2 )m

Γ (1 + m)
. (A3.2)

If u approaches zero, then the structure amplitude decreases proportionally to um
α1.

Let us note that the structure amplitude becomes weaker when the order m of the
satellite becomes higher whereas for m equal to zero the structure amplitude de-
scribes the main reflections. For the case with N harmonics, when uα1, . . . , uαN



On the Critical Points of the Structure Amplitude . . . 931

tend to zero, the factor g in the amplitude F assumes the form

g(uα1, . . . , uαN ) →
uα1,...,uαN→0

1
2π

∫ 2π

0

exp (imx)dx = δm,0. (A3.3)
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