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The electron—positron interaction greatly complicates the interpretation
of positron annihilation data. The two-detector Doppler measurements of
Mijnarends et al. as well as our theoretical calculations point at the con-
clusion that the local density approximation to e™—e™ interaction is a good
way of treating this problem in real metals, at least the simplest ones. This
shows that e™ —e™ interaction in an electron gas is the key to understanding
this phenomenon also in inhomogeneous systems. On the basis of dozens
of experiments one comes to the conclusion that the well known formula
of Boronski and Nieminen for the electron accumulation on the positron in
jellium describes the best the positron lifetimes in metals. However, it is
based on the calculations of Lantto which start from a physically oversim-
plified trial function. The results of Arponen and Pajanne, of Rubaszek and
Stachowiak, and of Stachowiak and Lach lead to too short positron lifetimes
in spite of using less controversial assumptions. The discrepancy is of the
order of 8 to 15% for rs = 2. This shows that we still do not fully understand

+

e —e” interaction even in an electron gas.

PACS numbers: 71.60.42z, 78.70.Bj

1. Introduction

In our considerations we will start from the following statements:

1. Electron—positron interaction (EPI) increases the electron density on the
positron in metals typically by one order of magnitude. The positron lifetime
behaves accordingly.

2. Theoretical calculations have been performed mainly for a homogeneous
electron gas. What is the usefulness of the results obtained in this way as concerns
application to real materials?

3. As well experimental investigations (Mijnarends et al. [1] by two-detector
Doppler broadening in Al) as our theoretical calculations [2, 3] (cf. also Sect. 9)
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point at the local density approximation (LDA) of eT—e™ correlations as a rea-
sonable way of applying jellium results to real materials.

4. The above circumstances make it at last possible to find how well theoreti-
cal calculations performed for jellium are confirmed by experimental measurements
of positron lifetime in real materials.

2. Theoretical approaches to et —e~ interaction in jellium

We will concentrate on the following approaches (for more details cf. [4]):

1. Calculations basing on the Bethe-Goldstone equation (Kahana [5], Car-
botte [6, 7], Rubaszek and Stachowiak [8], Sormann [9]).

2. The approach of Arponen and Pajanne [10] in which the Hamiltonian is
transcribed in terms of the Sawada bosons.

The remaining approaches base on the theory of liquids.

3. Lantto assumes a Jastrow type trial function and performs minimization
of the Hamiltonian using the Fermi hypernetted-chain approximation (FHNC) [11].

4. Starting from the hypernetted-chain (HNC) results of Lantto and cowork-
ers (Kallio, Pietildinen) [12, 13] Gondzik and Stachowiak [14] propose an approach
sufficiently simple to be applied directly to real materials [3, 2, 15].

5. The perturbed HNC (PHNC) approach of Stachowiak and Lach [16, 17]
provides an alternative way to study the effect of e™—e™ correlations in jellium.

3. The wave function of the system

The usefulness of positron annihilation for studies of the electronic structure
is based on conservation of the identity of electronic states during the interaction
with the positron (this point of view is supported by the theoretical result of
Majumdar that et —e™ interaction does not affect the Fermi surface [18]). For
this reason the wave function of the jellium—one positron system is assumed as a
Slater determinant built of functions ¥ge (re, 7). The functions ¢ (let us omit
the spin index) describe the scattering of the electron plane wave on the screened
positron and obey the equation (in the Hartree atomic units)

1y 14 k2
_ive - ivp +V(lre —rpl) | Y0 = ?¢k (1)

Describing the et —e™ interaction in this way is, of course, an approximation, but
attempts to go beyond this approximation led in our opinion to very few conclusive
results. However, we consider this problem as important.

The most general form of 1 (s) can be written as

Un(s) = %wu) [ + vy (s)] (2)

where 8 =7, — 7.
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4. The density of the screening cloud

The most important quantity to compute is the density of the screening
cloud. Since the functions 9, are weakly nonorthogonal, we will obtain a better
approximation taking this into account.

The general formula for the electron density is

I|W|2d7'1
S VP bt el
p(sl) f|@|2d7- ) (3)
where
si=r;—7rp, dr= INl ds;, dr _dr (4)
1 — 11 P - is 1 — 51 .

i=1
¥ is the wave function of the system expressed by the Slater determinant. N is
the number of electrons, r; are coordinates of the i electron.

In the case of weak nonorthogonality of the wave functions ¥, we get from
(3) the formula for the electron density

p(s) =2 Ui(s)tn(s) =2 Y Awrti(s)vr(s), (5)
) (k)
where

Awre = / ds'y (s Yne (). (6)

5. Application of the Bethe—Goldstone equation
5.1. The Kahana approach

The wave function 1, is assumed in the form
1

i(s) = — [ 4 ve(s) i (s)]. ™)
where
() = 5 Y Culg)e* e ®)
and '
W)= S Cilgre®ror )
(b re)

Cr(q) are Fourier coefficients.

In this way scattering to momentum states inside the Fermi surface is ex-
cluded. g is obtained under 4 assumptions:

1. The effective potential of et —e™ interaction is the static random phase
approximation (RPA) potential.
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2. The electrons can scatter only to momentum states outside the Fermi
sphere, since the states inside the Fermi sphere are fully occupied.

3. The scattering does not depend on the angle between k and k + g (this
is a rather controversial simplification).

4. The electron density is computed from the usual formula

p(s) =2 vi(s)vr(s). (10)
()
Under these conditions Eq. (1) takes the form of a Bethe—Goldstone equation
for the Fourier coefficients x(k,p) of the wave function ¢:

__ aV(k—-p|)
X(k,p) - p2 _|_ (k _p)z _ kQ

+ a
p?+(k—p

22 /qzl dqV(lg — pl)x(q,p), (11)

where momenta are expressed in units of the Fermi momentum kg, a = 2/(873kp)
and V(q) are the Fourier transforms of the effective electron—positron potential.
This equation has been derived by Kahana (Eq. (24) in [5], cf. also [19]).

The second assumption is not very convincing and has been criticized. In
the case of screening a heavy particle the states rearrange. Instead of describing
them with 3 quantum numbers k;, k,, k. corresponding to the representation in
Cartesian coordinates we describe them with the quantum numbers n, [, and m,
characteristic of spherical coordinates. The second assumption needs not to be
introduced. In general, the principles of physics impose the antisymmetry of the
wave function of the system. The Pauli exclusion principle is just a consequence
of this property. In the case of a positron using the wave function (2) shows that
the second assumption is too restrictive. The effect of the second assumption will
depend on the shape of w(s).

5.2. The approach of Rubaszek and Stachowiak

It differs from Kahana by omitting from the third assumption and by apply-
ing the Kohn—Sham potential in the Bethe-Goldstone equation [5] (instead of the
RPA potential). This potential is computed self-consistently and has the form

Vs = =5 + [ ds P Vinlo(o)] - Vi o) (12)

where Vi, (p) is the exchange-correlation correction chosen e.g. in the form pro-
posed by Hedin and Lundqvist. pg is the density of the electron gas.

This approach removes some of the difficulties encountered by the approach
of Kahana. In particular, non-physical properties of the annihilation rates of
Kahana (low density divergence of the annihilation rates) are avoided. This is
due both to achieving self-consistency and to including the exchange-correlation
correction in the potential (Fig. 1).
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Fig. 1. Annihilation rates of Kahana [5] (dashed curve) and of Rubaszek and Sta-
chowiak [8] (full curve).

6. Approaches based on the theory of liquids

The theory of liquids is a field of theoretical physics intensively developed
since the fifties [20]. The simplest case of this theory concerns a classical liquid.
Its development led to the elaboration of two particularly useful approximations
called Percus—Yevick and HNC. The first one, though being less satisfactory from
the point of view of the number of terms included in the diagram expansion, leads
to better results in the case when the particles of the liquid possess a hard core.
This is not the case of electrons. In their case it is preferable to use the HNC
approximation.

Formal mathematical similarity allows to extend the results of the classical
theory to the quantum case. However, while in the classical case the solution of
the problem provided directly the equation of state, in the quantum case it only
helps to compute the average value of the Hamiltonian while the system consists of
bosons and the trial function of the system is assumed in a special form called the
Jastrow trial function. In the case of fermions the HNC approximation appears in
the more complicated form of the Fermi HNC.

6.1. Calculations of Lantto

These calculations basing faithfully on a Jastrow type trial function are self-
-consistent. In the case of a system of one positron and N electrons the trial
function of Lantto has the form

U = F,Fy, &, (13)

where the factors Fy; and Fio are expressed by the functions-parameters f1; and
f12 through the formulae

i :Hfll(riaTj)7 FIQZHfIQ(ri>Tp)- (14)
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@ is the Slater determinant of free electrons. It is obvious that the variational
function-parameter f1; offers no possibility to minimize the Hamiltonian with re-
gard to the dependence of e™—e™ correlations on the distance from the positron.
Also the function-parameter fio does not include the important momentum de-
pendence of electron scattering on the positron. This is why the momentum de-
pendence of the annihilation probability cannot be obtained in this formalism.
The calculations have been performed using the Fermi HNC approach in all its
complexity.

The results of Lantto have been parameterized by Boronski and Niemi-
nen [21], including additionally some other physical requirements. Recent calcu-
lations using the Monte Carlo approach failed to reproduce the numerical results
of Lantto [22].

6.2. Approach of the Oulu group

Kallio et al. adopting after Zabolitzky [23] the Lado approximation, pro-
posed a particularly simple way of minimizing the trial function (13) [12, 13].
This resulted in the equation

[-V2+V(s)]w(s) =0 (15)

for the electron density amplitude w(s). V(s) remained, however, a rather com-
plicated functional of the electron distribution.

6.3. Approach of Gondzik and Stachowiak

The complexity of the potential V(s) in Eq. (15) made it difficult to achieve
self-consistency, at least for low values of the electron density. Moreover this poten-
tial, anyway, was not very reliable, because of poor account of the electron—electron
correlations in the trial function (13). This is why Gondzik and Stachowiak pro-
posed to simply replace this potential by its Kohn—Sham form [14]

w2 8/ _
Vals) = 5+ [ s D Vi ()] Vi ). (16)

The computation of the positron annihilation rate in the above formalism
is particularly simple and consists in solving a single nonlinear integro-differential
equation. The results are reasonable (cf. Fig. 2) and easy to obtain in the whole
range of electron densities.

6.4. The perturbed HNC' approach

The second assumption of Kahana is controversial, since the Pauli exclusion
principle should follow from the antisymmetry of the wave function ¥ and not
from any additional assumption.

Let us note that when the form (2.4) of Ref. [16] is adopted for 1 the wave
function of the system can be written as
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N
U(s1...8N) :Hw(si)é(sl...sN), (17)

where @ is a Slater determinant built from functions
1 i
s) = — [e"™® +u(s)]. 18
pu(s) = — [e* 4 vi(s) (18)

In Refs. [16] and [17] it was assumed that the form (17) of the wave function where
w(s) is obtained by solving the Gondzik-Stachowiak equation

[~V + Vo(s)]w(s) =0 (19)

allows vg to be small, so terms quadratic in vg can be omitted. This made possible
to solve Egs. (1) self-consistently.

7. The approach of Arponen and Pajanne

A satisfactory theory of EPI should include three necessary features, namely
self-consistency, momentum dependence of electron—positron scattering and real-
istic account of electron—electron correlations. These features are included in the
approach of Rubaszek and Stachowiak to the Bethe—Goldstone formalism and in
PHNC. They are also included in the approach of Arponen and Pajanne (AP).
They are not included in the approach of Lantto nor in that of Kahana.

The AP approach bases on a completely different formalism than the ap-
proaches presented above. For a pure electron gas the Hamiltonian of second
quantization has the form

N 1 I N
H,= Z EpCryCpo + @Z vg(p—qpq — Ne), (20)
po q
where c;,ra and cp, are electron creation and annihilation operators,
Pq = chocp+qm (21)
po
2
e
Vg = q727 (22)

N, is the electron number operator. The prime in the summation means that
q = 0 is excluded.

The approach of AP is based on the idea of Sawada and Wentzel of expressing
H, through boson-like operators. A part of H. is separated out and called RPA
Hamiltonian

A~ /
HBPA = Z gpc;'gcp[, + Z Vg0 _q0gqs (23)
po q

where

0q =Y [1— AP, P+ )}, cpigo (24)

po
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Here A(p,p’) = 1 if p and p’ are both greater or smaller than kg and zero oth-
erwise. This Hamiltonian can be approximately diagonalized by introducing the
boson-like operators Aqg.

In the Sawada boson representation the RPA Hamiltonian becomes

FTRPA
HIPA =" BAS Agp. (25)
qF
The boson vacuum corresponds to the ground RPA state of the electron gas.
Solving the problem of e™ —e™ interaction in jellium consists roughly in computing
the distribution of the Sawada bosons in presence of the positron.

8. The annihilation rates

The annihilation rate (inverse of lifetime) is one of the basic quantities char-
acterizing positron annihilation in the material under investigation. Theoretical
results obtained for an electron gas can be applied with a certain degree of reliabil-
ity only to metallic materials. We will not deal here with situations where several
lifetimes are observed.

As concerns the homogeneous electron gas, the annihilation rate A(rg) is
obtained from the formula

A(re) = 12

ng(rs,()) x 10%/s. (26)

g(rs, ) is the electron—positron correlation factor. For r = 0 it gives information
about the accumulation of electrons on the positron. It is equal to 1 in case when
the eT™—e™ interaction is neglected.

Several authors proposed on basis of theoretical calculations different for-
mulae for the correlation factors. For example Boroniski and Nieminen (BN) [21]
using mainly the results of Lantto [12] wrote the formula

g(rs,0) = 14 1.23r + 0.8295r%/2 — 1.26r2 + 0.3286r>/2 + 13 /6. (27)

The results of AP [10] led to a correlation factor obeying the formula proposed by
Barbiellini et al. [24]

g(rs,0) = 14 1.23r; — 0.0742r% 4+ 13 /6. (28)
Stachowiak and Lach (SL) [17] on basis of PHNC results proposed the form
g(rs,0) = 14 1.23r, — 0.1375r2 + 73 /6. (29)

It is worth mentioning that the results of Rubaszek and Stachowiak [8] and of
Lowy and Jackson [25] do not differ in principle from those of AP. The results of
Gondzik and Stachowiak [14] agree with the formula

g(rs,0) = 1.01906 + 1.336967 + 0.1365172 + 0.08112r3

+0.0086372 — 3.2491 x 10~ 475 + 4.41454 x 10778, (30)
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The annihilation rate described by the formulae (27)—(30) are shown in Fig. 2.
The results of applying them to real metals are collected in Table.

Fig. 2.

% (10°s™)

Comparison of different formulae for the positron annihilation rate in an electron

gas (dashed curve — HNC [14], dashed-dotted curve — Barbiellini et al. [24], solid curve

— PHNC [16], dotted curve — Boronski-Nieminen [21]).

TABLE

Positron lifetimes (in ps) in metals from the first and second group, and for Al. The
experimental values [26] are given in the second column. Some more recent experimental
data [27] are labeled with an asterisk. The next three columns present the results of
LMTO-ASA calculations of Rubaszek et al. [28] (from Table V in Ref. [28]). The next
six columns present our FLAPW results. Let us note that the 9th, 10th and 11th columns
contain the results of calculations [15] taking into account the smaller enhancement due

to the nonzero momentum of the positron. The last column presents the contribution

(in %) of the higher components in the Fourier expansion of the positron wave function

of the corresponding metals.

Metal | Exp. LMTO-LDA FLAPW- LDA Heavy positron % high
(Ref. [28]) (Ref. [15]) (Ref. [15]) comp.
BN SL | AP | BN | SL | AP BN SL AP
Li 291 300 284 | 260 | 298 | 275 | 258 300 277 260 1.7
Na 338 328 323 | 291 | 328 | 308 | 294 332 312 294 2.7
K 397 367 373 | 331 | 368 | 352 | 332 375 359 338 4.2
Rb 406 377 388 | 342 | 377 | 364 | 343 385 372 351 4.6
Cs 418 389 409 | 357 | 388 | 377 | 355 398 386 364 6.5
Al 163 | 163.4 | 155.4 | 145 | 162.3 | 152 | 143.9 | 165.9 | 155.3 | 147.2 5.3
Cu 110, | 104.6 | 102.9 | 97 105 | 101 | 97.4 | 107.8 | 103.4 | 101 5.6
118*
Ag 131, | 119.1 | 116.6 | 109 | 121 | 115 | 111 126 120 116 7.4
136*
Au 117 | 106.0 | 104.2 | 98 110 | 105 | 101 115 110 106 8.7
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9. Calculation of et —e~ interaction in lithium

In absence of the positron, following the approach of Gondzik and Sta-
chowiak, the electronic structure is described by the equations [2, 3]

[;VQ + V(T)} Pi(r) = Extn(r), {;V2 + V(r)] pa(r) =0, (31)

where

V(r)= —§+2/dr’

() TM/J%(T/) —d(r’)
Gl R
+VHL[2¢7 (1) + 93 ()] — Vaw(po)- (32)

Z is the charge of the nucleus, d(r) is the distribution of the positive charge in the
electron gas. It is assumed in the form

fi > Rws,
d(r) = po 1tor r WS (33)
0 for r < Rws,
where
3(Z - 2)
= Di. 4
po 47T(Rws)3 (3 )

Rws is the radius of the Wigner—Seitz sphere. 17 is the wave function of core
electrons. This limits us to elements having a two-electron core. 1, is the density
amplitude for conduction electrons. The Lagrange multiplier Fo which should
occur on the right-hand side of the second equation (31) is normalized to zero by
the last term in the formula (32), while F is the energy eigenstate of core electrons.
D differs from unity (and is equal to 1.24 in the case of lithium) because of the
necessity to normalize the density of valence electrons within the Wigner—Seitz
sphere.
In presence of the positron the above equations take the form

5TV W )| ) = B ()

1 1
[—QVQ +V(r)+ §W(rp, r)} X2(rp,7T) =0, (35)
where the screened electron—positron potential W (rp, r) is defined as
1
W(rp,r) = . + Wy (rp, 7)) + Wee(rp, 7). (36)
p

Here

AT Ry P S S Ly W GO R LR
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Wie(rp,7) = Vaw[2x3 (rp, 1) + X3 (rp, )] = Vaw 203 (r) + 93 (7)) (38)
x: indicate the form of the functions ¢; in presence of the positron. The positron
distribution is described, of course, by the positron wave function.

T (a.u.)

Fig. 3. Effective enhancement e(rp) inside an atom of lithium embedded in an electron
gas calculated in [15] (solid curve) and according to the LDA (dashed curve), the method
proposed by Barbiellini et al. (the generalized gradient approximation) [24] (dotted
curve) and the method proposed by Rubaszek (the weighted density approximation for

the systems containing a positron) [28] (dashed-dotted curve).

The annihilation rates following from solving Egs. (35) are shown in Fig. 3.
Their agreement with the predictions of LDA is striking, at least in the core region.
As concerns the interstitial space, in order to obtain reliable results we should use
a more realistic function d(r) in Eq. (32).

10. Conclusions

Calculations have been performed for several metals using different formu-
lae for the e™—e™ correlation function. In each case the LDA approximation to
et —e™ correlations was assumed. The results are shown in Table. Our calcula-
tions were performed using the numerical code WIEN95 [29] which uses the full
potential linearized augmented plane wave (FLAPW) approach to band structure
calculations. The calculations of Rubaszek et al. [28] shown for comparison were
performed within the linearized muffin-tin orbital (LMTO) approach.

It is visible that the formula of Boroniski and Nieminen gives the best agree-
ment with the experiment. However, it is based on the controversial calculations
of Lantto [11]. The more reliable calculations (described in this article) lead to
too high positron annihilation rates. There is a need to find the reason for this
discrepancy.
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