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The electron–positron interaction greatly complicates the interpretation

of positron annihilation data. The two-detector Doppler measurements of

Mijnarends et al. as well as our theoretical calculations point at the con-

clusion that the local density approximation to e+−e− interaction is a good

way of treating this problem in real metals, at least the simplest ones. This

shows that e+−e− interaction in an electron gas is the key to understanding

this phenomenon also in inhomogeneous systems. On the basis of dozens

of experiments one comes to the conclusion that the well known formula

of Boroński and Nieminen for the electron accumulation on the positron in

jellium describes the best the positron lifetimes in metals. However, it is

based on the calculations of Lantto which start from a physically oversim-

plified trial function. The results of Arponen and Pajanne, of Rubaszek and

Stachowiak, and of Stachowiak and Lach lead to too short positron lifetimes

in spite of using less controversial assumptions. The discrepancy is of the

order of 8 to 15% for rs = 2. This shows that we still do not fully understand

e+−e− interaction even in an electron gas.

PACS numbers: 71.60.+z, 78.70.Bj

1. Introduction

In our considerations we will start from the following statements:
1. Electron–positron interaction (EPI) increases the electron density on the

positron in metals typically by one order of magnitude. The positron lifetime
behaves accordingly.

2. Theoretical calculations have been performed mainly for a homogeneous
electron gas. What is the usefulness of the results obtained in this way as concerns
application to real materials?

3. As well experimental investigations (Mijnarends et al. [1] by two-detector
Doppler broadening in Al) as our theoretical calculations [2, 3] (cf. also Sect. 9)
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point at the local density approximation (LDA) of e+−e− correlations as a rea-
sonable way of applying jellium results to real materials.

4. The above circumstances make it at last possible to find how well theoreti-
cal calculations performed for jellium are confirmed by experimental measurements
of positron lifetime in real materials.

2. Theoretical approaches to e+−e− interaction in jellium

We will concentrate on the following approaches (for more details cf. [4]):
1. Calculations basing on the Bethe–Goldstone equation (Kahana [5], Car-

botte [6, 7], Rubaszek and Stachowiak [8], Sormann [9]).
2. The approach of Arponen and Pajanne [10] in which the Hamiltonian is

transcribed in terms of the Sawada bosons.
The remaining approaches base on the theory of liquids.
3. Lantto assumes a Jastrow type trial function and performs minimization

of the Hamiltonian using the Fermi hypernetted-chain approximation (FHNC) [11].
4. Starting from the hypernetted-chain (HNC) results of Lantto and cowork-

ers (Kallio, Pietiläinen) [12, 13] Gondzik and Stachowiak [14] propose an approach
sufficiently simple to be applied directly to real materials [3, 2, 15].

5. The perturbed HNC (PHNC) approach of Stachowiak and Lach [16, 17]
provides an alternative way to study the effect of e+−e− correlations in jellium.

3. The wave function of the system

The usefulness of positron annihilation for studies of the electronic structure
is based on conservation of the identity of electronic states during the interaction
with the positron (this point of view is supported by the theoretical result of
Majumdar that e+−e− interaction does not affect the Fermi surface [18]). For
this reason the wave function of the jellium–one positron system is assumed as a
Slater determinant built of functions ψkσ(re, rp). The functions ψk (let us omit
the spin index) describe the scattering of the electron plane wave on the screened
positron and obey the equation (in the Hartree atomic units)

[
−1

2
∇2

e −
1
2
∇2

p + V (|re − rp|)
]

ψk =
k2

2
ψk. (1)

Describing the e+−e− interaction in this way is, of course, an approximation, but
attempts to go beyond this approximation led in our opinion to very few conclusive
results. However, we consider this problem as important.

The most general form of ψk(s) can be written as

ψk(s) =
1√
Ω

w(s)
[
eiks + vk(s)

]
, (2)

where s = re − rp.
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4. The density of the screening cloud

The most important quantity to compute is the density of the screening
cloud. Since the functions ψk are weakly nonorthogonal, we will obtain a better
approximation taking this into account.

The general formula for the electron density is

ρ(s1) = N

∫ |Ψ |2dτ1∫ |Ψ |2dτ
, (3)

where

si = ri − rp, dτ =
N∏

i=1

dsi, dτ1 =
dτ

s1
. (4)

Ψ is the wave function of the system expressed by the Slater determinant. N is
the number of electrons, ri are coordinates of the i electron.

In the case of weak nonorthogonality of the wave functions ψk, we get from
(3) the formula for the electron density

ρ(s) = 2
∑

( k
occ)

ψ∗k(s)ψk(s)− 2
∑

(k 6=k′
occ )

Ak′kψ∗k′(s)ψk(s), (5)

where

Ak′k =
∫

ds′ψ∗k(s′)ψk′(s′). (6)

5. Application of the Bethe–Goldstone equation
5.1. The Kahana approach

The wave function ψk is assumed in the form

ψk(s) =
1√
Ω

[
eiks + vk(s)− v′k(s)

]
, (7)

where

vk(s) =
1
Ω

∑
q

Ck(q)ei(k+q)s (8)

and

v′k(s) =
1
Ω

∑

( q
|k+q|<kF

)
Ck(q)ei(k+q)s. (9)

Ck(q) are Fourier coefficients.
In this way scattering to momentum states inside the Fermi surface is ex-

cluded. ψk is obtained under 4 assumptions:
1. The effective potential of e+−e− interaction is the static random phase

approximation (RPA) potential.
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2. The electrons can scatter only to momentum states outside the Fermi
sphere, since the states inside the Fermi sphere are fully occupied.

3. The scattering does not depend on the angle between k and k + q (this
is a rather controversial simplification).

4. The electron density is computed from the usual formula

ρ(s) = 2
∑

( k
occ)

ψ∗k(s)ψk(s). (10)

Under these conditions Eq. (1) takes the form of a Bethe–Goldstone equation
for the Fourier coefficients χ(k, p) of the wave function ψk:

χ(k, p) =
aV (|k − p|)

p2 + (k − p)2 − k2

+
a

p2 + (k − p)2 − k2

∫

q≥1

dqV (|q − p|)χ(q,p), (11)

where momenta are expressed in units of the Fermi momentum kF, a = 2/(8π3kF)
and V (q) are the Fourier transforms of the effective electron–positron potential.
This equation has been derived by Kahana (Eq. (24) in [5], cf. also [19]).

The second assumption is not very convincing and has been criticized. In
the case of screening a heavy particle the states rearrange. Instead of describing
them with 3 quantum numbers kx, ky, kz corresponding to the representation in
Cartesian coordinates we describe them with the quantum numbers n, l, and m,
characteristic of spherical coordinates. The second assumption needs not to be
introduced. In general, the principles of physics impose the antisymmetry of the
wave function of the system. The Pauli exclusion principle is just a consequence
of this property. In the case of a positron using the wave function (2) shows that
the second assumption is too restrictive. The effect of the second assumption will
depend on the shape of w(s).

5.2. The approach of Rubaszek and Stachowiak

It differs from Kahana by omitting from the third assumption and by apply-
ing the Kohn–Sham potential in the Bethe–Goldstone equation [5] (instead of the
RPA potential). This potential is computed self-consistently and has the form

V (s) = −1
s

+
∫

ds′
ρ(s′)− ρ0

|s− s′| + VHL[ρ(s)]− VHL(ρ0), (12)

where VHL(ρ) is the exchange-correlation correction chosen e.g. in the form pro-
posed by Hedin and Lundqvist. ρ0 is the density of the electron gas.

This approach removes some of the difficulties encountered by the approach
of Kahana. In particular, non-physical properties of the annihilation rates of
Kahana (low density divergence of the annihilation rates) are avoided. This is
due both to achieving self-consistency and to including the exchange-correlation
correction in the potential (Fig. 1).
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Fig. 1. Annihilation rates of Kahana [5] (dashed curve) and of Rubaszek and Sta-

chowiak [8] (full curve).

6. Approaches based on the theory of liquids

The theory of liquids is a field of theoretical physics intensively developed
since the fifties [20]. The simplest case of this theory concerns a classical liquid.
Its development led to the elaboration of two particularly useful approximations
called Percus–Yevick and HNC. The first one, though being less satisfactory from
the point of view of the number of terms included in the diagram expansion, leads
to better results in the case when the particles of the liquid possess a hard core.
This is not the case of electrons. In their case it is preferable to use the HNC
approximation.

Formal mathematical similarity allows to extend the results of the classical
theory to the quantum case. However, while in the classical case the solution of
the problem provided directly the equation of state, in the quantum case it only
helps to compute the average value of the Hamiltonian while the system consists of
bosons and the trial function of the system is assumed in a special form called the
Jastrow trial function. In the case of fermions the HNC approximation appears in
the more complicated form of the Fermi HNC.

6.1. Calculations of Lantto

These calculations basing faithfully on a Jastrow type trial function are self-
-consistent. In the case of a system of one positron and N electrons the trial
function of Lantto has the form

Ψ = F12F11Φ, (13)

where the factors F11 and F12 are expressed by the functions-parameters f11 and
f12 through the formulae

F11 =
∏

ij

f11(ri, rj), F12 =
∏

i

f12(ri, rp). (14)
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Φ is the Slater determinant of free electrons. It is obvious that the variational
function-parameter f11 offers no possibility to minimize the Hamiltonian with re-
gard to the dependence of e−−e− correlations on the distance from the positron.
Also the function-parameter f12 does not include the important momentum de-
pendence of electron scattering on the positron. This is why the momentum de-
pendence of the annihilation probability cannot be obtained in this formalism.
The calculations have been performed using the Fermi HNC approach in all its
complexity.

The results of Lantto have been parameterized by Boroński and Niemi-
nen [21], including additionally some other physical requirements. Recent calcu-
lations using the Monte Carlo approach failed to reproduce the numerical results
of Lantto [22].

6.2. Approach of the Oulu group

Kallio et al. adopting after Zabolitzky [23] the Lado approximation, pro-
posed a particularly simple way of minimizing the trial function (13) [12, 13].
This resulted in the equation

[−∇2 + V (s)]w(s) = 0 (15)

for the electron density amplitude w(s). V (s) remained, however, a rather com-
plicated functional of the electron distribution.

6.3. Approach of Gondzik and Stachowiak

The complexity of the potential V (s) in Eq. (15) made it difficult to achieve
self-consistency, at least for low values of the electron density. Moreover this poten-
tial, anyway, was not very reliable, because of poor account of the electron–electron
correlations in the trial function (13). This is why Gondzik and Stachowiak pro-
posed to simply replace this potential by its Kohn–Sham form [14]

V0(s) = −1
s

+
∫

ds′
w2(s′)− ρ0

|s− s′| + VHL[w2(s)]− VHL(ρ0). (16)

The computation of the positron annihilation rate in the above formalism
is particularly simple and consists in solving a single nonlinear integro-differential
equation. The results are reasonable (cf. Fig. 2) and easy to obtain in the whole
range of electron densities.

6.4. The perturbed HNC approach

The second assumption of Kahana is controversial, since the Pauli exclusion
principle should follow from the antisymmetry of the wave function Ψ and not
from any additional assumption.

Let us note that when the form (2.4) of Ref. [16] is adopted for ψk the wave
function of the system can be written as
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Ψ(s1 . . . sN ) =
N∏

i=1

w(si)Φ(s1 . . . sN ), (17)

where Φ is a Slater determinant built from functions

ϕk(s) =
1√
Ω

[
eiks + vk(s)

]
. (18)

In Refs. [16] and [17] it was assumed that the form (17) of the wave function where
w(s) is obtained by solving the Gondzik–Stachowiak equation

[−∇2 + V0(s)]w(s) = 0 (19)

allows vk to be small, so terms quadratic in vk can be omitted. This made possible
to solve Eqs. (1) self-consistently.

7. The approach of Arponen and Pajanne

A satisfactory theory of EPI should include three necessary features, namely
self-consistency, momentum dependence of electron–positron scattering and real-
istic account of electron–electron correlations. These features are included in the
approach of Rubaszek and Stachowiak to the Bethe–Goldstone formalism and in
PHNC. They are also included in the approach of Arponen and Pajanne (AP).
They are not included in the approach of Lantto nor in that of Kahana.

The AP approach bases on a completely different formalism than the ap-
proaches presented above. For a pure electron gas the Hamiltonian of second
quantization has the form

Ĥe =
∑
pσ

εpc+
pσcpσ +

1
2Ω

∑
q

′
vq(ρ−qρq − N̂e), (20)

where c+
pσ and cpσ are electron creation and annihilation operators,

ρq =
∑
pσ

c+
pσcp+qσ, (21)

vq =
e2

q2
, (22)

N̂e is the electron number operator. The prime in the summation means that
q = 0 is excluded.

The approach of AP is based on the idea of Sawada and Wentzel of expressing
Ĥe through boson-like operators. A part of Ĥe is separated out and called RPA
Hamiltonian

ĤRPA
e =

∑
pσ

εpc+
pσcpσ +

∑
q

′
vqσ−qσq, (23)

where

σq =
∑
pσ

[1−∆(p,p + q)]c+
pσcp+qσ. (24)
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Here ∆(p, p′) = 1 if p and p′ are both greater or smaller than kF and zero oth-
erwise. This Hamiltonian can be approximately diagonalized by introducing the
boson-like operators AqE .

In the Sawada boson representation the RPA Hamiltonian becomes

ĤRPA
e =

∑

qE

EA+
qEAqE . (25)

The boson vacuum corresponds to the ground RPA state of the electron gas.
Solving the problem of e+−e− interaction in jellium consists roughly in computing
the distribution of the Sawada bosons in presence of the positron.

8. The annihilation rates

The annihilation rate (inverse of lifetime) is one of the basic quantities char-
acterizing positron annihilation in the material under investigation. Theoretical
results obtained for an electron gas can be applied with a certain degree of reliabil-
ity only to metallic materials. We will not deal here with situations where several
lifetimes are observed.

As concerns the homogeneous electron gas, the annihilation rate λ(rs) is
obtained from the formula

λ(rs) =
12
r3
s

g(rs, 0)× 109/s. (26)

g(rs, r) is the electron–positron correlation factor. For r = 0 it gives information
about the accumulation of electrons on the positron. It is equal to 1 in case when
the e+−e− interaction is neglected.

Several authors proposed on basis of theoretical calculations different for-
mulae for the correlation factors. For example Boroński and Nieminen (BN) [21]
using mainly the results of Lantto [12] wrote the formula

g(rs, 0) = 1 + 1.23rs + 0.8295r3/2
s − 1.26r2

s + 0.3286r5/2
s + r3

s /6. (27)

The results of AP [10] led to a correlation factor obeying the formula proposed by
Barbiellini et al. [24]

g(rs, 0) = 1 + 1.23rs − 0.0742r2
s + r3

s /6. (28)

Stachowiak and Lach (SL) [17] on basis of PHNC results proposed the form

g(rs, 0) = 1 + 1.23rs − 0.1375r2
s + r3

s /6. (29)

It is worth mentioning that the results of Rubaszek and Stachowiak [8] and of
Lowy and Jackson [25] do not differ in principle from those of AP. The results of
Gondzik and Stachowiak [14] agree with the formula

g(rs, 0) = 1.01906 + 1.33696rs + 0.13651r2
s + 0.08112r3

s

+0.00863r4
s − 3.2491× 10−4r5

s + 4.41454× 10−6r6
s . (30)
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The annihilation rate described by the formulae (27)–(30) are shown in Fig. 2.
The results of applying them to real metals are collected in Table.

Fig. 2. Comparison of different formulae for the positron annihilation rate in an electron

gas (dashed curve — HNC [14], dashed-dotted curve — Barbiellini et al. [24], solid curve

— PHNC [16], dotted curve — Boroński–Nieminen [21]).

TABLE

Positron lifetimes (in ps) in metals from the first and second group, and for Al. The

experimental values [26] are given in the second column. Some more recent experimental

data [27] are labeled with an asterisk. The next three columns present the results of

LMTO-ASA calculations of Rubaszek et al. [28] (from Table V in Ref. [28]). The next

six columns present our FLAPW results. Let us note that the 9th, 10th and 11th columns

contain the results of calculations [15] taking into account the smaller enhancement due

to the nonzero momentum of the positron. The last column presents the contribution

(in %) of the higher components in the Fourier expansion of the positron wave function

of the corresponding metals.

Metal Exp. LMTO-LDA FLAPW- LDA Heavy positron % high

(Ref. [28]) (Ref. [15]) (Ref. [15]) comp.

BN SL AP BN SL AP BN SL AP

Li 291 300 284 260 298 275 258 300 277 260 1.7

Na 338 328 323 291 328 308 294 332 312 294 2.7

K 397 367 373 331 368 352 332 375 359 338 4.2

Rb 406 377 388 342 377 364 343 385 372 351 4.6

Cs 418 389 409 357 388 377 355 398 386 364 6.5

Al 163 163.4 155.4 145 162.3 152 143.9 165.9 155.3 147.2 5.3

Cu 110, 104.6 102.9 97 105 101 97.4 107.8 103.4 101 5.6

118*

Ag 131, 119.1 116.6 109 121 115 111 126 120 116 7.4

136*

Au 117 106.0 104.2 98 110 105 101 115 110 106 8.7
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9. Calculation of e+−e− interaction in lithium

In absence of the positron, following the approach of Gondzik and Sta-
chowiak, the electronic structure is described by the equations [2, 3]

[
−1

2
∇2 + V (r)

]
ψ1(r) = E1ψ1(r),

[
−1

2
∇2 + V (r)

]
ψ2(r) = 0, (31)

where

V (r) = −Z

r
+ 2

∫
dr′

ψ2
1(r′)

|r − r′| +
∫

dr′
ψ2

2(r′)− d(r′)
|r − r′|

+VHL[2ψ2
1(r) + ψ2

2(r)]− VHL(ρ0). (32)

Z is the charge of the nucleus, d(r) is the distribution of the positive charge in the
electron gas. It is assumed in the form

d(r) =

{
ρ0 for r > RWS,

0 for r < RWS,
(33)

where

ρ0 = D
3(Z − 2)
4π(RWS)3

. (34)

RWS is the radius of the Wigner–Seitz sphere. ψ1 is the wave function of core
electrons. This limits us to elements having a two-electron core. ψ2 is the density
amplitude for conduction electrons. The Lagrange multiplier E2 which should
occur on the right-hand side of the second equation (31) is normalized to zero by
the last term in the formula (32), while E1 is the energy eigenstate of core electrons.
D differs from unity (and is equal to 1.24 in the case of lithium) because of the
necessity to normalize the density of valence electrons within the Wigner–Seitz
sphere.

In presence of the positron the above equations take the form
[
−1

2
∇2 + V (r) +

1
2
W (rp, r)

]
χ1(rp, r) = E1(rp)χ1(rp, r),

[
−1

2
∇2 + V (r) +

1
2
W (rp, r)

]
χ2(rp, r) = 0, (35)

where the screened electron–positron potential W (rp, r) is defined as

W (rp, r) = − 1
|r − rp| + Wp(rp, r) + Wxc(rp, r). (36)

Here

Wp(rp, r) = 2
∫

dr′
χ2

1(rp, r′)− ψ2
1(r′)

|r − r′| +
∫

dr′
χ2

2(rp, r′)− ψ2
2(r′)

|r − r′| , (37)
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Wxc(rp, r) = VHL[2χ2
1(rp, r) + χ2

2(rp, r)]− VHL[2ψ2
1(r) + ψ2

2(r)]. (38)

χi indicate the form of the functions ψi in presence of the positron. The positron
distribution is described, of course, by the positron wave function.

Fig. 3. Effective enhancement ε(rp) inside an atom of lithium embedded in an electron

gas calculated in [15] (solid curve) and according to the LDA (dashed curve), the method

proposed by Barbiellini et al. (the generalized gradient approximation) [24] (dotted

curve) and the method proposed by Rubaszek (the weighted density approximation for

the systems containing a positron) [28] (dashed-dotted curve).

The annihilation rates following from solving Eqs. (35) are shown in Fig. 3.
Their agreement with the predictions of LDA is striking, at least in the core region.
As concerns the interstitial space, in order to obtain reliable results we should use
a more realistic function d(r) in Eq. (32).

10. Conclusions

Calculations have been performed for several metals using different formu-
lae for the e+−e− correlation function. In each case the LDA approximation to
e+−e− correlations was assumed. The results are shown in Table. Our calcula-
tions were performed using the numerical code WIEN95 [29] which uses the full
potential linearized augmented plane wave (FLAPW) approach to band structure
calculations. The calculations of Rubaszek et al. [28] shown for comparison were
performed within the linearized muffin-tin orbital (LMTO) approach.

It is visible that the formula of Boroński and Nieminen gives the best agree-
ment with the experiment. However, it is based on the controversial calculations
of Lantto [11]. The more reliable calculations (described in this article) lead to
too high positron annihilation rates. There is a need to find the reason for this
discrepancy.
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[15] H. Stachowiak, E. Boroński, in: Proc. 34 Polish Seminar on Positron Annihi-

lation, Turawa (Poland) 2002, Ed. K. Jerie, University of Opole, University of

WrocÃlaw, Opole 2002, p. 75.

[16] H. Stachowiak, Phys. Rev. B 41, 12522 (1990).

[17] H. Stachowiak, J. Lach, Phys. Rev. B 48, 9828 (1993).

[18] C.K. Majumdar, Phys. Rev. 140, A227 (1965).

[19] A. Klein, R.E. Prange, Phys. Rev. 112, 1008 (1958).

[20] R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley, New

York 1975.
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