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The method of linear equations was applied to nonzero temperatures.

Two models were considered. The first is the disordered model of random

ferromagnetic and antiferromagnetic integrals whose transition matrix meets

the condition of invariance of the sum of terms in each line. Although the

other model (one-dimensional Ising model in an external field) is devoid of

disorder it does not require any assumptions on the form of the transition

matrix.
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1. Introduction

The paper is a continuation of the earlier study [1] presenting the method
of linear equations permitting a reduction of the physical problem of thermo-
dynamical quantities determination for the systems with frozen disorder to the
mathematical problem of solving a set of linear equations. A natural consequence
was the question if it is possible to apply this method to the systems at nonzero
temperatures. This is not a problem of a simple generalisation but its solution
would respond to a great demand as, although the disordered systems have been
studied for a few decades no exact results are available even for the simplest sys-
tems, besides the ground state. A possible reason is that the calculations are
performed on the partition function which means that all details of the exchange
integrals are important. In the linear equation method proposed the calculation
is performed on the probabilities, which simplifies the description of the problem
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and the calculation procedure. Moreover, the method of linear equations requires
consideration of a small fragment of the infinite system whose thermodynamical
quantities are averaged.

This paper is composed of two parts dealing with the application of the linear
equation method to two models at nonzero temperature. Section 2 presents the
application of the method of linear equations to a one-dimensional Ising model
with random ferro- and antiferromagnetic integrals on the square lattice rolled on
a tube. For this system the temperature dependent internal energy and entropy
were found. In Sec. 3 the method of linear equations is applied to one-dimensional
Ising ferromagnet in an external magnetic field. The study is summed up in Sec. 4.

2. The Ising model ±J

The method of linear equations has been proposed in order to determine
the ground state properties of systems with randomly distributed integrals ±J [1].
In this method the steady state value of the vector of state π described by the
equation

Q · π = π (1)

is determined. The vector π is made of the vectors P i corresponding to different
possible excitations in a base of ferro- and antiferromagnetic integrals. Since the
coordinates of P i correspond to the probabilities of the mutually exclusive events
the sum

∑
i P i = Je, where Je is the vector whose coordinates are all equal to 1.

The matrix Q is made of the matrices M i describing the probabilities of all pos-
sible sequences of frustrated and unfrustrated squares and meeting the condition
M ·Je = Je, where M =

∑
i M i. The condition defines the Markov process and

will be referred to as the Markov condition or matrix, and it is usually written in
the form:

∑
l M(k, l) = 1. This condition implies that the probability of finding

the ferromagnetic bond is 1−p, whereas that of finding the antiferromagnetic bond
is p and the probability of finding either one or the other is a certain event of the
probability 1. Let us consider now if it is possible and if yes — in which way to
apply the method to a system with averaging over the canonical ensemble, when
the probability of finding a certain spin state is directly proportional to the Boltz-
mann factor. It could be supposed that by replacing the factor eβ by eβ/(eβ +e−β)
for the satisfied bond (of lower energy) and the factor e−β by e−β/(eβ + e−β) for
the unsatisfied bond it would be possible to meet the Markov condition so to a
possibility of applying the method of linear equations. However, it is not so as
the replacement of the probabilistic weights (p, 1− p) by (eβ , e−β) is not the only
difference between the averaging over disorder and averaging over the canonical
ensemble. If we average over disorder, the exchange integrals assume the values
of +J and −J independently of each other, but the averaging over the canonical
ensemble is performed for a certain distribution of the exchange integrals and a
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different condition is imposed on the satisfied and unsatisfied bonds when the ele-
mentary polygon is frustrated and unfrustrated. The square lattice considered can
only have unfrustrated squares without, with two or with four unsatisfied bonds
and frustrated squares with one or three unsatisfied bonds. These restrictions vio-
late the Markov condition and change the condition for the stationary probability
distribution from Eq. (1) into

Q · π = λπ, (2)

where λ is the factor reducing the matrix Q to the Markov form defined by the
relation

∑
j M(i, j) = λ and as follows from (2) it is an eigenvalue of the matrix Q.

In order to illustrate the method let us consider an infinite tube made of
squares of one bond in width. It is a one-dimensional model with additional bonds
perpendicular to the tube. When these bonds are ferromagnetic they are satisfied
and when they are antiferromagnetic they are unsatisfied. The system is described
by the Hamiltonian

H = −
∑

i,j

JijSiSj , (3)

where (ij) refer to the pairs of neighbouring spins, Jij = J with the probability
1 − p and Jij = −J with the probability p. The vector of state is selected in a
natural way: its first coordinate is the probability that the spin is directed upwards
P (↑) while the second coordinate is the probability that it is directed downwards
P (↓) = 1 − P (↑). It has been shown that the eigenvector for each choice of the
exchange integrals is the same and the matrices of transition commute. It is a
consequence of the fact that the thermodynamical quantities depend only on the
concentration of the antiferromagnetic integrals p and not on their distribution
between the bonds perpendicular or parallel to the tube. As follows from the
above, each positioning of the exchange integrals can be considered independently.

The eigenequation for the case when both bonds are ferromagnetic can be
written as

[
e2K 1

1 e2K

][
P (↑)
P (↓)

]
= λff

[
P (↑)
P (↓)

]
, (4)

where λff = e2K ± 1 and K = βJ . However, for λff = e2K − 1, P (↑) 6∈ 〈0, 1〉 so
the lower value should be rejected. If λff = e2K + 1 then P (↑) = P (↓) = 1/2. The
choice of a higher value is also imposed by the Markov condition. This condition
is satisfied by the matrix divided by the higher eigenvalue as the sum of terms
in both lines is the same and equals e2K + 1. When the ferromagnetic bond is
perpendicular to the tube and the antiferromagnetic one is along the tube, then



454 Marian BÃlaszyk

[
1 e2K

e2K 1

][
P (↑)
P (↓)

]
= λfa

[
P (↑)
P (↓)

]
. (5)

Again the probability of the physical meaning P (↑) = P (↓) = 1/2 corresponds to
the higher eigenvalue of λfa = e2K + 1. The exchange of the ferromagnetic and
antiferromagnetic bonds leads to the following equation:

[
1 e−2K

e−2K 1

][
P (↑)
P (↓)

]
= λaf

[
P (↑)
P (↓)

]
(6)

and only the higher eigenvalue λaf = 1 + e−2K gives a solution of physical sense
P (↑) = P (↓) = 1/2. We get the same solution when both bonds are antiferromag-
netic so for λaa = 1 + e−2K and P (↑) = P (↓) = 1/2. As for each of the cases we
have the same vector of state, the value −βF averaged over the distribution of the
exchange integrals can be written as

〈−βF 〉J = (1− p)2 ln λff + (1− p)p ln λfa + p(1− p) ln λaf + p2 ln λaa

= (1− p) ln (e2K + 1) + p ln (e−2K + 1). (7)

Having determined the above value we are able to find the internal energy

〈E〉J =
∂

∂β
〈βF 〉J = 2J

(
p− 1

1 + e−2K

)
(8)

and the value of entropy is already independent of the concentration of the ex-
change integrals.

〈S/k〉J = ln 2 + ln cosh K −K tanh K. (9)

The model considered above is so simplified that it has lost some essential features
of an disordered system. In less simplified cases we have a lot of vectors of state
and the relationships between them imply the necessity of considering an infinite
number of the vectors with the arbitrary probability P (↑). However, this is not
the main obstacle in application of this method. The above described method is
limited only to the systems whose transition matrix can be reduced to the Markov
matrix and for which 1

λ

∑
j Q(i, j) = 1, where λ is the highest eigenvalue of the

matrix Q. In order to generalise this method over other matrices we shall consider
an ordered one-dimensional Ising model.

3. The one-dimensional ferromagnetic Ising model
in uniform magnetic field

Let us consider the Ising model described with the Hamiltonian

H = −J
∑

i

SiSi+1 −H
∑

i

Si (10)

with Si = ±1. Denoting K = βJ, B = βH, similarly as above we can write the
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eigenequation for the transition matrix in the form
[

eK+B e−K

e−K eK−B

][
ψ(↑)
ψ(↓)

]
= λ

[
ψ(↑)
ψ(↓)

]
. (11)

Although this equation can be interpreted as the condition of the vector of state
preservation, we cannot treat ψ(↑) as the probability of the spin being directed
upwards and ψ(↓) as the probability of the spin being directed downwards because
the matrix does not satisfy the Markov condition. The relation with probability
is obtained by imposing the normalisation condition of the form

[
ψ(↑) ψ(↓)

] [
ψ(↑)
ψ(↓)

]
= 1 (12)

onto the vector state. Equation (11) can be rewritten as

[
ψ(↑) ψ(↓)

] [
eK+B/λ e−K/λ

e−K/λ eK−B/λ

][
ψ(↑)
ψ(↓)

]
= 1. (13)

As the vector of state is defined to the accuracy of a phase factor, similarly as in
the quantum mechanics, Eq. (13) can be rewritten as

[
|ψ(↑)|e−iα |ψ(↓)|e−iα

] [
eK+B/λ e−K/λ

e−K/λ eK−B/λ

][
|ψ(↑)|eiα

|ψ(↓)|eiα

]
= 1 (14)

or in a shortened form

〈ψ|F /λ|ψ〉 = 1, (15)

where F is the transition matrix for the ferromagnetic bond. As all the terms of the
matrix are real, the phase factor can be omitted in the following if we consider one
of the states. However, when considering many states its presence must be taken
into regard in order to ensure orthonormalisation of the state vectors corresponding
to different eigenvalues. In the case considered we have two eigenvalues: λ± =

eK(coshB±
√

sinh2 B + e−4K), corresponding to two eigenvectors 〈ψ+| and 〈ψ−|
of the terms ψ+(↑) =

√
1
2 + 1

2 〈si〉, ψ+(↓) =
√

1
2 − 1

2 〈si〉, ψ−(↑) =
√

1
2 − 1

2 〈si〉,
ψ−(↓) = −

√
1
2 + 1

2 〈si〉, where 〈si〉 = sinh B√
sinh2 B+e−4K

is the mean value of the spin

of the infinite system. This expression has been imposed by the normalisation
condition as |ψ+(↑)|2 = 1

2 (1 + 〈si〉) is the probability that the spin is directed
upwards and |ψ+(↓)|2 = 1

2 (1 − 〈si〉) is the probability that the spin is directed
downwards. Equation (13) gives the probability of the presence of a bond in each
of the states of the system. For example, the probability of the first and the second
spin of the ferromagnetic bond being directed upwards is ψ+(↑)(eK+B

/λ+)ψ+(↑).
Let us consider a finite system made of one spin and one bond. Such a

system must be described by the higher and the lower eigenvalue of the matrix F .
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The sum over the states or the partition function can be written as

〈η|F |η〉 = (〈ψ+|+ 〈ψ−|)F (|ψ+〉+ |ψ−〉) = 〈ψ+|F |ψ+〉+ 〈ψ−|F |ψ−〉

= λ+ + λ− = 2eK cosh B = eK+B + eK−B . (16)

In order to determine the magnetisation we look for

∂

∂B
〈η|F |η〉 = eK+B − e

K−B
(17)

and hence,

〈si〉 =
∂

∂B 〈η|F |η〉
〈η|F |η〉 =

eK+B − eK−B

eK+B + eK−B
. (18)

When N →∞, the problem is simplified as

〈η|F N |η〉 = 〈ψ+|F N |ψ+〉+ 〈ψ−|F N |ψ−〉

= λN
+ + λN

− = λN
+

[
1 + (λ−/λ+)N

] −→
N→∞

λN
+ . (19)

Therefore, we can describe the system not by the partition function but in terms
of probabilities as

〈η|F N |η〉 = 〈ψ+|F N |ψ+〉 (20)

and

〈η|(F /λ+)N |η〉 = 〈ψ+|F /λ+|ψ+〉 = 1. (21)

For example, the internal energy per spin can be determined by the mean energy
of four events

〈E〉 =
1
β
〈ψ+|

[
(−K −B)eK+B

/λ+ Ke−K/λ+

Ke−K/λ+ (−K + B)eK−B/λ+

]
|ψ+〉

=
1

βλ+

(
−KeK coshB −BeK sinhB

+
−KeK sinh2 B −BeK sinhB cosh B + e−3KK√

sinh2 B+e−4K

)
. (22)

Similarly, the magnetisation per spin can be determined as

〈s〉 = 〈ψ+|
[

eK+B/λ+ 0

0 −eK−B/λ+

]
|ψ+〉 =

sinhB√
sinh2 B + e−4K

. (23)
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4. Summary

The paper presents a generalisation of the method of linear equations over
the systems with nonzero temperatures. Two one-dimensional Ising systems have
been analysed. For the first model with the integrals ±J on the square lattice
the results have been obtained employing the possibility of reducing the transition
matrix to a Markov matrix. In the other model (one-dimensional ferromagnet)
the method has been generalised to an arbitrary transition matrix. The next step
that still seems possible is the extension of the method to the Ising model ±J

in an external magnetic field. The problem that appears in this method is that
the choice of the higher eigenvalue of the transition matrix is equivalent to the
assumption that the system is infinite and implies that the averaging is performed
on the basis of the states considered. In this model we have two types of states:
those of the exchange integrals and those of the spins. The condition of the system
infinity should be written in terms of the states ±J , while the averaging should
be performed in terms of the spin states at the fixed states ±J .
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