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Properties of Confined Polymer Melts
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Properties of simple models of confined linear polymer chains were stud-
ied by means of the Monte Carlo method. Model chains were built of united
atoms (statistical segments) and embedded to a simple cubic lattice. Then
polymers were put into a slit formed by two parallel impenetrable surfaces.
Chain lengths were varied up to 800 segments and the density of the poly-
mer melt was changed up to 0.5. A Metropolis-like sampling Monte Carlo
algorithm was used to determine the static properties of this model. The
influence of the size of the confinement, the polymer melt concentration and
the chain length on the chain’s size and the structure was studied. The
universal behavior of all confined polymer linear chains under consideration
was found and discussed.

PACS numbers: 02.50.Ng, 36.20.Ey, 61.25.Hq

1. Introduction

The properties of polymers in confined space are the subject of many studies
because of their practical importance in lubrication, adhesion, separation methods
based on the capillary electrophoresis corrosion protecting coating or colloidal
stabilization [1]. These systems are difficult to be studied experimentally although
recently a progress has been made. The questions concerning the influence of the
confinement on the properties of polymers or proteins are especially interesting
from the theoretical point of view [2].

Recently, some computer simulation studies were published on confined poly-
mer systems [3-7]. It was shown that the dynamic properties of confined polymer
melts are significantly different from those of bulk polymers. The scaling behavior
static and dynamic of chain’s properties, internal structure of chains, and instan-
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taneous shape were intensively studied and discussed. This was caused by the fact
that confined polymer chains were deformed and thus were in a thermodynami-
cally unfavorable state so they exerted strong pressure on the surfaces. What is
interesting, these differences exist even for relatively short chains which are not
entangled. The determination of all the details concerning the structure of layers
formed by confined chains is important for studying the dynamic properties.

The influence of the internal macromolecular architecture (linear chains, star-
-branched chains, cyclic chains) on the properties of confined chains was also stud-
ied employing simple lattice models and computer simulation [8-10]. The short-
and long-time dynamics of confined chains were determined [8, 9]. The orienta-
tion and the deformation of coils were also studied. Instantaneous shape of the
confined chains was also determined [10].

In this paper we present the results of computer simulations of simplified
models of confined linear chain systems. Thus, the main goal of this study was to
study the static properties of the linear chain systems. We compared properties
of relatively dense polymer melts and infinitely diluted solution linear chains both
located between a pair of two impenetrable walls.

2. The model

A polymer chain was in our model reduced to a united atom sequence. Each
model chain consisted of the sequence of N identical united atoms (beads) con-
nected by N — 1 segments (homopolymer) [10]. Beside single chains (infinite
dilution) we also simulated dense polymer melts consisting of n chains each of
equal length N. We studied the properties of a chain as a whole without details
on the level of a bead so this model was quite sufficient for this purpose [11]. In
order to make the calculation more efficient the chains were embedded to a simple
cubic lattice. The excluded volume interactions were introduced into the model
by forbidding the chain to cross itself and the chains were fully flexible with no
local stiffness introduced. No long-range attractive potential was added which
corresponded to good solvent conditions (or a high temperature). The chains were
put into a slit formed by a pair of two impenetrable parallel surfaces and the dis-
tance between these surfaces d was varied (there were d unoccupied lattice sites
between walls in the direction perpendicular to the walls). The confining walls
were repulsive only and thus their influence was entropic only. Periodic boundary
conditions were imposed in directions along the surfaces only. The size of the
Monte Carlo box L was chosen to be large enough to avoid the interaction of a
chain with itself. The concentration of the melt was expressed as the fraction of
the accessible volume in the slit occupied by polymer beads

Nm
C= T (1)

where m stands for the number of chains.
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3. The simulation method

The properties of model systems were determined by means of the Monte
Carlo simulation. The sampling algorithm consisted of local random modifications
of chain’s conformation [8]. These modifications were: 2-bond motion, 3-bond mo-
tion, 3-bond crankshaft motion, 1-bond end of chain reorientations, and 2-bond
end of chain reorientations [8, 12]. A new conformation was accepted due to geo-
metrical constraints and the excluded volume. Initial configurations of the system
were built in the process of simultaneous growing and equilibration of chains in or-
der to obtain the desired chain lengths and polymer densities [8, 11]. Simulations
were started from these prepared systems for given distances between the surfaces
and the production run for each distance d was done separately. For each system
under consideration (N, n, ¢) we performed 20-30 independent simulation runs
using different initial configurations.

4. Results and discussion

The simulations were performed for the chains built of N = 50, 100, 200,
400, and 800 beads. The choice of chain length was done in order to cover the
regions where chains were self-entangled and entangled [11]. For the melt studied
the number of chains was not constant in order to maintain the constant density of
the melt. The distance between the surfaces d was varied between 30 and 3 in order
to cover the regime from almost not distorted chain to a flattened 2-dimensional
chain. (One has to remember that the distance d = 3 is the smallest at which
changes of chain’s conformations are possible to occur in our model [8].) The size
of the Monte Carlo box along the two remaining directions was changed in such
a way as to maintain the constant concentration of the polymer segments in the
cell. For this purpose, the edge of the Monte Carlo box was changed between 43
and 136 and the number of chains was varied between 550 and 562 (for chains
N = 50), 275 and 281 (for chains N = 100), 137 and 140 (for chains N = 200),
68 and 70 (for chains N = 400), 34 and 35 (for chains N = 800). Additionally,
the simulations were carried out for melt densities ¢ between 0.1 and 0.5. The
calculations for higher densities cannot be carried out as the sampling algorithm
appeared to be inefficient for these systems.

The first question concerned the changes of the mean size of linear macro-
molecules in the confinement. The size of a chain is usually described by the
mean-squared radius of gyration (S?), i.e. the mean-squared distance of a bead
from the center-of-mass. In Fig. 1 we present double logarithmic plot of (S?) as a
function of the length of chain N. One can observe that for all confined polymer
systems under consideration the size of chains scales as N7. For single chains the
scaling exponent changes from 1.17 + 0.01 (for almost an unconfined chain) to
1.48 £ 0.01 (for a strongly confined chain). For the dense melt this exponent was
almost constant: v = 0.99 + 0.02 and 1.01 £ 0.01 for d = 30 and 3, respectively.
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These results are not unexpected because for unconfined chains: v = 6/5 for sin-
gle polymers in 3 dimensions, v = 3/2 for single polymers in 2 dimensions and
~v =1 for melts. We would like to emphasize that the above scalings indicate that
strongly confined linear polymers have properties of two-dimensional chains.
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Fig. 1. The mean-square radius of gyration (S?) as a function of the chain length N for
some distances between the walls d for single chain and for the melt with the segment

density ¢ = 0.5. The distances between the surfaces d are given in the inset.
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Fig. 2. The mean-square radius of gyration {(S?) as a function of the distance between
the walls d for the chain length N = 100.

Figure 2 presents changes of (S?) with the distance between the confining
surfaces d for a single chain with NV = 100 beads and for a melt consisting of such
chains at the density ¢ = 0.5. One can observe that the changes of the mean-
-squared radius of gyration are similar in both cases: the size of the chain decreases
slightly when the distance d decreases. Then, the size starts to grow rapidly. The
shape of (S?) curve can be explained by the fact that during the squeezing of chains
the z-contribution to the radius of gyration decreases while the xy-contribution
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decreases. A minimum on the (S?) curve corresponds to the distance between the
walls which is close to a size of unconfined polymer chains [8, 10].

It was previously shown that the size of confined star-branched and linear
chains can be described by a universal curve [3, 8]. Hence, we tried to check if
this universal behavior can also be extended to polymer melts. The size is now
described by a reduced quantity (S2)/(S3) where the index “0” denotes an uncon-
fined (free) chain. For a single chain (S3) corresponds to the mean-squared radius
of gyration of a macromolecule consisting of the same number of segments but un-
confined, i.e. located in the Monte Carlo box with periodic boundary conditions
imposed in all directions. For the melt case we assumed that (S3) corresponded
to the mean-squared radius of gyration of chains in unconfined melt of the same
density. The reduced size of the slit d* was defined as

d* = d/ (S, (2)

Figure 3 presents the plots of the radius of gyration, the same as in Fig. 1 but
using the reduced quantities. Other chain lengths were also added for the test of
the concept. One can observe that for a single chain regardless its length these
reduced values are located approximately on the same curve. Data concerning
melts are also located on the same master curve. The deviations from that curve
are larger in the case of the longest chains and for the confinements d* < 1. This
means that for longer chains the impact of the confinement on polymer size was
stronger. This can be explained by the fact that the conformational changes and
the reorientation of longer chains and dense system is more difficult although it is
difficult to judge if it is a result of the inefficiency of the sampling algorithm.
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Fig. 3. The reduced mean-square radius of gyration (S2)/(S3) as a function of the

reduced distance between the walls d*. The chain lengths are given in the inset.

The ratio (S?)/(R?) is the next commonly used parameter that describes
the size and the structure of polymer chains. The dependence of this ratio on the
size of the slit d is shown in Fig. 4. The ratios do not change monotonically: for
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Fig. 4. The ratio (S?)/(R?) as the function of the distance between the walls d for the
chain length N = 100.

a single chain one can observe a maximum for the same size of the slit for which
a minimum on the (S2?) curve was found (see Fig. 2). For the melt case there is
a maximum on the curve but is located for larger d when compared to the (S?)
curve. The ratio for the melt is always considerably larger when compared to a
single chain. The value of this ratio found for a single linear chain without the
excluded volume was 0.167 while the introduction of the excluded volume led to
the ratio 0.157 [1, 11].
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Fig. 5. The mean-square radius of gyration (S?) as a function of the polymer density
© in the slit. The case of the melt consisting of linear chains with N = 100 beads for

the distances between the surfaces d = 5 and d = 30 and for a free melt.

The changes of chains size with the polymer density ¢ are presented in Fig. 5.
One can observe that in general the size of chains decreases with the increase in
the density and the shape of both curves is similar. This behavior is qualita-
tively the same as for free (unconfined) melts, while for more squeezed chains
(d = 5) the decrease is more rapid [4]. For densities below 0.3 the decrease in the
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Fig. 6. The ratio (S?)/(R?) as the function of the polymer density ¢ in the slit. The
case of the melt consisting of linear chains with N = 100 beads for the distances between
the surfaces d = 5 and d = 30.

chains’ size is more rapid for smaller size of the slit while for larger densities the
changes are similar. Figure 6 presents the changes of the ratio (S?)/(R?) with the
polymer density ¢. Here one can notice that the behavior of this parameter is
quite different in both cases under consideration. In general, the ratio increases
with the density and the increase is more rapid for the more confined chains. For
the larger slit, the ratio is rather close to the theoretical value 0.167 for chains
without excluded volume. For a squeezed melt the ratio is close to 0.157 — a
value that is characteristic of unconfined chains with the excluded volume.

The structure of confined polymer systems can also be described by the
distribution of polymer beads along the direction perpendicular to the confining
surfaces. Figure 7 presents a typical example of the density profiles for single
chains and melts. The shape of the density profiles for single chains is Gaussian.
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Fig. 7. Segment densities along the z-axis for the single chains and melt. The case of

the distance d = 10. The chain lengths are given in the inset.
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For melts, one can see the constant polymer density across the slit. The only
exception was the segment densities for the layers closest to the confining surfaces
which were considerably smaller. This is obviously the effect of a repulsive entropic
force caused by the excluded volume effect. The density profile for all chain lengths
are exactly the same for melts. The density profiles for other distances d are very
similar to those discussed above.

5. Conclusions

Properties of confined linear polymer chains were studied using simple and
reduced lattice models. The behavior of single linear chains and of melts composed
of such chains was determined. Polymer chains were constructed as a sequence
of identical segments on a simple cubic lattice at good solvent conditions (no en-
ergetical contact was distinguished). The Metropolis-like Monte Carlo simulation
algorithm used enables us to study long chains up to 800 statistical segments and
melts with the density of polymer segments 0.5.

It was shown that regardless of the melt density and the chain length the
changes of polymer’s size can be described by a universal curve. The scaling of the
polymer size depends on the degree of the confinement: strongly confined chains
behave as two-dimensional ones.

One has to remember that interaction of polymers with a surface (like adsorp-
tion) is one of the most important factors that influence the dynamic properties of
confined polymers. Therefore, the further extension of this model should include
polymer bead—surface interactions which is underway.
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