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A fully quantum-mechanical model for carrier scattering transport in

semiconductor intersubband devices was applied to modelling of carrier dy-

namics in quantum cascade lasers. The standard model uses the envelope

function and effective mass approximations to solve electron band structure

under an applied bias. The k ·p model has been employed in p-type systems

where the more complex band structure requires it. The resulting wave func-

tions are then used to evaluate all relevant carrier–phonon, carrier–carrier

and alloy scattering rates from each quantised state to all others within the

same and the neighbouring period. This piece of information is then used

to construct a rate equation for the equilibrium carrier density in each sub-

band and this set of coupled rate equations are solved self-consistently to

obtain the carrier density in each eigenstate. The latter is a fundamental

description of the device and can be used to calculate the current density

and gain as a function of the applied bias and temperature, which in turn

yields the threshold current and expected temperature dependence of the

device characteristics. A recent extension which includes a further iteration

of an energy balance equation also yields the electron (or hole) temperature

over the subbands. This paper will review the method and describe its ap-

plication to mid-infrared and terahertz, GaAs, GaN, and SiGe cascade laser

designs.

PACS numbers: 42.60.–v

1. Introduction

The quantum cascade laser (QCL) has demonstrated an impressive extension
of the infrared frequency range and until recently could be operated at wavelengths
as long as 160 µm. Recent experience in the design of novel QCLs clearly shows
that systematic and compact theoretical modelling is a necessary step towards
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effective practical implementation, improvements of the existing structures, and
the understanding of physical processes [1, 2]. The laser gain depends on the
scattering rates between different subbands and also between different in-plane
momentum states within a subband (carrier heating / cooling effects). These
effects have been extensively studied in QCLs based on conduction band intersub-
band transitions. One approach relies on self-consistent solutions of rate equations
[1−3]. Another approach uses the microscopic, and computationally more demand-
ing Monte Carlo technique [4]. Although the latter does not make the assumption
of equilibrium-like carrier distributions over states within any single subband, and
therefore gives a deeper insight into the electron dynamics, the former are much
faster while still giving quite good estimates of device characteristics. In p-type
system the problem is generally similar to the case of n-type cascades, but is more
complex because the hole subband structure and scattering rates are anisotropic
and strongly dependent on the in-plane momentum of the hole states. In this pa-
per we will present a brief overview of the model limited only to the applications
on n-type QCLs while results for both p- and n-type structure will be presented
(for more information about p-type QCL modelling see Ref. [5]).

2. The model

Consider a QCL structure with a large number of periods (each containing
of multiple quantum well) in an externally applied electric field. The energy spec-
trum is formally continuous, but to a very good approximation can be considered
as consisting of quasi-discrete states (resonances). Based on the wave function
localization properties, these states can be associated to different periods of the
QCL, so that each period has an identical set of N states in the energy range
of interest. Electron scattering occurs between states within the same period,
and between states associated to different periods, the latter clearly becoming less
effective for more distant periods because of reduced wave function overlap. As-
suming an identical electron distribution in each period, one may consider some
“central” period and take its P nearest neighbours on either side, and write the
scattering rate equations in the steady-state:

N∑

j=1,j 6=i

njWj,i − ni

N∑

j=1,j 6=i

Wi,j +
P∑

k=1

N∑

j=1,j 6=i

[
nj(Wj,i+kN + Wj+kN,i)

−ni(Wi+kN,j + Wi,j+kN )
]

= 0, (1)

where i + kN is the i-th state of the k-th neighbouring period, Wi,j is the total
scattering rate from state i into state j, ni is the electron concentration of the
i-th state. The first two sums in Eq. (1) are due to intra-period, and the third —
due to inter-period scattering. After solving for electron densities ni, macroscopic
parameters of the system like current density, threshold current, and laser gain
can be estimated. The scattering time Wi,f is a function of both ni and nf , the
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initial and final subband populations, hence, this set of equations has to be solved
self-consistently using an iterative procedure. At equilibrium, the rate at which
the electron distributions gain kinetic energy (relative to the particular subband
minimum) through scattering, will balance with the rate at which they lose kinetic
energy to the lattice. Despite the fact that electron–electron scattering is elastic
as far as total energy is concerned, intersubband electron–electron transitions do
convert potential energy into kinetic energy (or vice versa). From the viewpoint
of this work this would lead to an increase (decrease) in the total kinetic energy
of a subband population, because the potential energy as defined here includes
the quantised component of the kinetic energy. Hence, the kinetic energy balance
condition in case where only electron-LO phonon and electron–electron processes
are included, can be written as [2]:

∆ =
∑

em.,abs.,e−e

∑

f

∑

i

niWi,f(Ei − Ef + δE) = ∆e−LO + ∆e−e = 0, (2)

where Ei−Ef is the subband separation, and the change in energy δE is equal to
−ELO for phonon emission (em.), +ELO for phonon absorption (abs.), and zero for
electron–electron (e–e) scattering. Hence, ∆e−LO is net electron-LO phonon, and
∆e−e is net electron–electron contribution in the balance equation. The method
is easily extendable in case that other scattering mechanisms (electron-acoustical
phonon, impurity and alloy scattering, etc.) should be taken into account. The
next step of the procedure, is to vary the electron temperature (assumed to be the
same for all subbands) until the kinetic energy balance equation Eq. (2) is satisfied
self-consistently.

The current density can be calculated by subtracting the current density
component due to electrons scattering into the next periods of the QCL from the
component due to electrons scattering back. If we put a reference plane somewhere
in the injection barrier of the central period, the current density flowing through
that cross-section can be written as:

J =
P∑

k=1

N∑

i=1

N∑

j=1

k · ni(Wi,j+kN −Wi+kN,j). (3)

The factor k in the summation, effective for non-nearest-neighbour scattering,
comes from scatterings from any QCL period left of the centre period into any pe-
riod right of it, or vice versa (i.e. skipping the central period, but going through the
reference plane). In order to reduce the number of scattering rate processes neces-
sary to calculate the electron distribution and the corresponding current density
(note that the number of total scattering rate processes is equal to N2(2P +1)−N),
we introduce the “tight-binding” approximation assuming that only a few closest
neighbours interact, and set P = 2. The choice of quantum scattering mechanisms
depends on the material and doping density, as well as wavelength. For example in
the novel GaAs-based THz QCLs the energy separation between most of subbands



78 P. Harrison et al.

is smaller than the LO phonon energy and electron–electron scattering becomes
the dominant scattering mechanism, hence necessitating a large number of possi-
bly relevant scattering processes to be accounted for [3]. To extract the output
characteristics of QCLs, one has to change the electric field F (i.e. the applied
voltage) and calculate the modal gain GM and the total current density J for each
value of the field.

3. Applications

Electric field vs. current density characteristics at lattice temperature
Tlatt = 20 K is shown in Fig. 1a for original GaAs/AlGaAs terahertz QCL [6].
Under the assumption T e = Tlatt (dashed line), the F − J curves show current
density saturation and negative differential resistance (NDR) features at very low
currents, which are not consistent with experimental results [6]. We find with the
full calculation (solid line), which includes the energy balance, that current is pre-
dicted to saturate at ∼ 680 A/cm2 in reasonable agreement with that measured at
∼ 820 A/cm2. Calculated values of the average electron temperature are also
shown. A schematic diagram of analysed structure is given in the inset. The calcu-
lations also show (see Fig. 1b) that, up to the NDR feature, Te can be approximated
as linear function T e ≈ Tlatt + βJ, where β ∼ 52 K/(kA cm−2). The most recent
micro-probe photoluminscence measurement but in a different terahertz QCLs de-
sign [7] also suggests linear T e(J) dependence with β ∼ 69−77 K/(kA cm−2), in
close agreement with our findings.

Fig. 1. (a) Electric field vs. current density characteristics in GaAs/AlGaAs THz

QCL at lattice temperature Tlatt = 20 K. A schematic diagram of analysed structure

is given in the inset. (b) Calculated electron temperature vs. current density in the

terahertz QCL at lattice temperature Tlatt = 20 K. The symbols are the calculated

results and the line represents the least square fit used to derive the values of coupling

constant β. An example of electron temperature evaluation for specific value of electric

field (F = 3.3 kV/cm) is shown in the inset (see Eq. (2)).
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Fig. 2. (a) A schematic diagram of quasi-bound energy levels and associated wave

functions squared for an injector-active region-collector segment of GaN/AlGaN THz

QCL. The layer sequence of one period of structures, in nanometers, from right to left

from the injection barrier: 0.7, 3, 0.6, 3.9, 0.8, 7, 0.6, 7.6. The normal script denotes

the wells and bold — the barriers. (b) Electric field-current characteristics calculated

for three temperatures.

The designs for GaN/AlGaN quantum cascade lasers emitting 38 µm (∆E ∼
34 meV — GaAs forbidden Restrahlenband) are shown in Fig. 2a [8]. The quasi-
bound energies and associated wave functions are calculated with the intrinsic
electric field induced by piezoelectric and spontaneous polarization included. The
population inversion up to 25% is found resulting in feasible laser action [8]. Fig-
ure 2b shows electric field-current characteristics for three different lattice tem-
peratures. The characteristics exhibit current density saturation as well as the
region of negative differential resistance. Saturation occurs for the electric field
value high enough to misalign the upper laser level and ground injector states,
i.e. positioning the upper laser level in energy below the ground injector states.
Figure 3 shows the population inversion ∆n = n3 − n1, and populations of the
active laser levels as a function of lattice temperature in GaN/AlGaN QCL. The
inversion slightly decreases at higher temperatures due to increased depopulation
rate from the upper into the lower laser level. The GaN/AlGaN design features

Fig. 3. The population inversion ∆n = n3−n1, the subband populations of the upper

(n3) and the lower (n1) laser levels (left axis) and current density (right axis) as a

function of lattice temperature.
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good thermal stability predominantly due to larger LO-phonon energy compared
to lasing energy. A significant increase in current density above Tlatt = 100 K is
also predicted in this structure.

Self-consistent energy balance simulations, within either the single- or
multiple-temperature model (in the latter case each subband having its own car-
riers temperature) have been performed for p-Si/SiGe quantum cascade struc-
tures [9]. In this system there are no polar optical phonons, and the calculation
includes nonpolar acoustic and optical phonon (deformation potential) scattering,
alloy disorder scattering, and hole–hole scattering. Results for a simple strain-
-balanced cascade, comprising the stack of alternating wells and barriers —
16 monolayer (4.41 nm) Ge0.3Si0.7 wells and 8 monolayer (2.15 nm) wide Si bar-
riers — grown on a Ge0.2Si0.8 virtual substrate, are shown in Figs. 4 and 5. The

Fig. 4. The bias dependence of the HH1 and LH1 subband temperatures in the p-SiGe

cascade described in the text, calculated within the multiple-temperature model, for

different values of hole sheet density per period, at Tlatt = 20 K.

Fig. 5. The bias dependence of the current density in the p-SiGe cascade described in

the text, calculated within the multiple-temperature model, for different values of hole

sheet density per period, at Tlatt = 20 K.

cascade has just two low-lying states per period, the ground HH1 and the first —
excited, LH1 state; the next, HH2 state is sufficiently higher in energy to remain
almost inaccessible to holes throughout the range of biases used in the calculation.
The LH1–HH1 energy spacing in the Si/SiGe system is primarily determined by
the strain in the quantum well layers, and here amounts to 27.5 meV. In a biased
cascade the alignment of the HH1 state from the preceding (higher) well and the
LH1 state of the next (lower) well at k‖ = 0 occurs at a field of 42 kV/cm. How-
ever, for finite k‖ the alignment appears at different fields, because of the different
dispersions of the HH and LH states, so the phenomenon of resonance is not so
strong as in the case of n-type heterostructures. As the bias field varies, the spac-
ing between LH1 and HH1 states of the same well changes only slightly, and most
of the potential drop per period manifests in the displacement of the sets of states
belonging to adjacent periods.
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The hole temperatures, calculated for different values of the total hole sheet
density in this cascade, Fig. 4, depend nonmonotonically on the bias field, and
may be quite different in the two subbands for some values of bias, or similar for
other values. Also, they increase with increasing hole density, but this dependence
is relatively weak. In a conduction subband cascade the different values of carrier
temperatures would hardly have any effect on the optical spectra, because of the
identical dispersions of subbands and the wavevector conservation in optical tran-
sitions, but may be important in transport. On the other hand, in p-type cascades
the different values of hole temperatures are important for intersubband optical
properties as well, because these depend on the hole distributions in the strongly
and unequally dispersive subbands.

Interestingly, the calculated current density is not much affected by the type
of calculation (single- or multiple-temperature model), as shown in Fig. 5, and
the same applies to the population of the two states. Throughout the range of
parameters explored in these calculations, the LH1 population remains smaller
than that of the HH1 state, implying the existence of population inversion on the
interwell HH1→LH1 optical transition. There is a region (60–70 kV/cm) of NDR,
and this is more prominent for larger hole densities, because of the increasing role
of hole–hole scattering. NDR appears as the interplay of the bias-dependent rate of
the interwell processes of this type (which favour small spacing between subbands),
and the bias-dependent asymmetry of right→ left and left→ right transfers, which
requires somewhat larger subband spacings. Although the peak/valley current
ratio may not be very large, there exists the possibility of domain formation in the
cascade when biased in the above range.

4. Conclusion

In summary we reviewed the method for physical modelling and describe its
application to design and optimisation of GaAs, GaN, SiGe-based cascade lasers.
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