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We present the results of a new excitonic formalism for the treatment

of ultrafast dynamics in asymmetric semiconductor multiple quantum well

structures. The method is infinite order in the optical field, with trunca-

tion of the infinite hierarchy of dynamical equations being accomplished via

a factorization of six-particle correlation functions into a product of two-

and four-particle ones. We use this formalism to calculate the THz emis-

sion and degenerate four-wave mixing signals from biased semiconductor

superlattices under different excitation conditions. We present a number of

density-dependent effects that demonstrate the central role that the intra-

band polarization plays in determining and modifying the nonlinear ultrafast

response of the system.

PACS numbers: 78.47.+p, 42.65.Re, 78.67.–n

1. Introduction

There has been considerable interest in recent years in the development of
a clear theoretical understanding and treatment of the nonlinear optical response
of semiconductor nanostructures to ultrashort optical pulses [1–7]. One common
approach to this problem has been to expand the response in powers of the optical
field [2, 4, 5–7]. This approach has been very successful for the treatment of many
different nonlinear effects. However, there are many effects such as Rabi flopping
that cannot be treated perturbatively. A method that is infinite order in the optical
field is to employ the semiconductor Bloch equations (SBEs) in the Hartree–Fock
approximation. This approach has been very successful in describing a number of
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phenomena such as the dynamic Stark effect. However, it has been shown [5, 8]
that it is not suited to structures in which excitonic effects are strong, such as
biased semiconductor superlattices (BSSLs), as it underestimates the electron–hole
correlations in the intraband response. In this work, we employ the excitonic Bloch
equations of Hawton and Dignam [3] to calculate the intraband and interband
response of a BSSL to ultrashort optical pulses. These equations are infinite order
in the optical field and retain the important electron–hole correlations within an
exciton.

2. Results and discussion

The dynamical behavior of electrons and holes in BSSLs have been inves-
tigated both theoretically [1–7] and experimentally [7–10] by a large number of
authors. The basic intraband dynamics can be understood in terms of the station-
ary states of non-interacting electrons in the superlattice potential in the presence
of a uniform, along-axis static electric field, F . As has been well documented,
these states have energies given by Ep = E0 + eFpd, where d is the superlattice
period, and p is an integer. This forms the so-called Wannier–Stark ladder (WSL).
The intraband dynamics can be simply understood in terms of the evolution of
the time-dependent wavepacket formed from a superposition of these stationary
states. Within a one-band approximation, this wavepacket undergoes periodic os-
cillations at the so-called Bloch frequency, ωB = eFd/h̄. This motion is known as
Bloch oscillations (BOs).

This simple picture is modified when the electron–hole Coulomb interactions
— i.e. excitonic effects — are taken into account [2, 3, 6, 7]. These effects are par-
ticularly strong for low to moderate electric fields where the WSL energy spacing
is comparable to the binding energy of the 1s excitons. One of the key effects is
that not only is the BO frequency modified, but many different BO frequencies
arise, due to the different spacings between the excitonic WSL states. It is thus
crucial in this system that any theoretical approach treat correctly the electron–
hole correlation effects within each exciton. It is for this reason that we employ
an excitonic basis to treat the dynamics.

We consider a BSSL that is excited via an optical field given by Eopt(R, t) =∑
K Eopt

K (t), where for one-pulse THz experiments, K = ±κ1, while for two-pulse
degenerate four-wave mixing (DFWM) experiments, the sum is over ±κ1 and ±κ2,
where κ1 and κ2 are the wave vectors of the incident pulses. The Hamiltonian
that we use to describe the system is given by [2, 3]:

H =
∑

µ;K

h̄ωµB†
µ,KBµ,K − V

∑

K

(
Eopt
−K · P inter

K + h.c.
)

+V
∑

k

[
1
2ε

P intra
−k −ETHz

ext δk,0

]
· P intra

k , (1)



58 M.M. Dignam et al.

where V is the system volume, h̄ωµ is the energy and B†
µ,K is the creation operator

of the exciton (in the dc field) with internal quantum number, µ, and center of
mass wave-vector, K. The external THz field (if present) is assumed to be spatially
uniform over the structure and is given by ETHz

ext (t). The interband polarization

with wave vector K is given by P inter
K = 1

V

∑
µ

(
MµB†

µ,−K + M∗
µBµ,K

)
, where

Mµ is the excitonic interband dipole matrix element. Finally, the intraband po-
larization with wave vector k is P intra

k = 1
V

∑
µ,ν

∑
K Gµ,νB†

µ,KBν,k+K , where
Gµ,ν is the intraband dipole matrix element between two excitonic states [2]. For
DFWM, K in the third sum in Eq. (1) runs over the values, Km = m(κ1 − κ2),
where m is an integer. This gives the wave vectors of all of the polarization grat-
ings created via the interfering excitonic waves. The first sum in Eq. (1) runs over
wave vectors, Kn = (n + 1)κ1 − nκ2, where n is an integer. This gives the wave
vectors of all of the excitons that are scattered out of the original directions via the
intraband polarization gratings. For single beam experiments, these equations still
hold with κ2 = κ1. In deriving this Hamiltonian, we have neglected the exchange
interaction (which is valid for the densities considered) and have approximated the
exciton–exciton interaction via a dipole–dipole interaction [2].

We use the Heisenberg equations to determine operator dynamics. This
creates an infinite hierarchy of dynamic equations. We truncate the hierarchy
by factoring the three-exciton (six-particle) correlation functions into one- and

two-exciton correlation functions. Thus, for example
〈
B†

µ,K1
B†

ν,K2
Bβ,K3

〉
→

〈
B†

µ,K1
Bβ,K3

〉〈
B†

ν,K2

〉
. Note that this factorization is very different than that

used in the SBE’s, as it retains the intra-excitonic electron–hole correlations and
the long range exciton–exciton correlations. We have shown that this factorization
is accurate for the calculation of DFWM signals to third order in BSSL’s [2]. Our
method is similar to the approach of Axt and Mukamel [1] except that our use of the
dipole approximation for the exciton–exciton interaction makes the equations more
computationally feasible for complicated systems such as BSSLs. We account for
dephasing and decoherence phenomenologically via the interband and intraband

dephasing times, Tµ and Tµν , respectively. The dynamical equation for
〈
B†

µ,Kn

〉

thus becomes

ih̄
d〈B†

µ,Kn
〉

dt
= −h̄

(
ωµ +

i
Tµ

) 〈
B†

µ,Kn

〉
+ Eopt

−Kn
·M∗

µ

+
∑

ν;Km

Eintra∗
Kn−Km

·Gν,µ

〈
B†

ν,Km

〉
, (2)

where Eintra
−K ≡ − 〈

P intra
K

〉
/ε + ETHz

ext δK,0 is the total self-generated near-field
intraband field with the wave vector K, where ε is the permittivity. There is

a corresponding equation for the intraband correlation functions
〈
B†

µ,Kn
Bν,Km

〉
,
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which closes the set of equations. In deriving these equations, we have neglected
the phase-space filling (PSF) terms associated with the fact that the excitons are
not perfect bosons. The neglect of PSF terms is valid for this system for the
densities considered in this paper. However, at higher densities, where the exciton
Bohr radius becomes comparable to the inter-excitonic spacing PSF effects can
become important. In these cases, these equations can be generalized to account
for these effects [2].

The physics of the DFWM signal can be understood in a simple physical
way from Eq. (2). The grating consisting of the intraband internal field with wave
vector, K = κ2 − κ1, scatters the excitons with wave vector κ2 into the DFWM
direction, 2κ2−κ1. Higher-order gratings scatter the excitons into different direc-
tions and perhaps back into the 2κ2−κ1 direction again. Of particular importance
for response beyond third order is the internal intraband field with K = 0. This
field interacts with the excitons in exactly the same way as does an external

THz field: the dc component of this field renormalizes the excitonic energy, h̄ωµ,
while its THz component dynamically couples levels with different µ [6]. As we
shall see, it is this field that is largely responsible for the peak oscillations seen in
spectrally-resolved DFWM signals and for the density-dependence of THz signals
in single-pulse experiments.

We now present calculated results for DFWM and THz emission for the
GaAs/Ga0.7Al0.3As superlattice used in recent experiments [9, 10, 7]: the well
widths and barrier widths are 67 Å and 17 Å, respectively, the applied dc electric
field is either 12.5 kV/cm (for THz results) or 15 kV/cm (for DFWM results),
and there is no external THz field. The calculated linear absorption spectrum
due to heavy-holes excitons for the two different dc fields is shown in Fig. 1. The
spectra are dominated by heavy-hole 1s excitonic states, which are labelled by the
single internal quantum number, µ, which describes the 1s exciton in which the
average along-axis electron–hole separation is approximately µd [2]. Thus, for the
1s excitons, µ plays the role that n does for the single-particle WSL states except
that the excitonic WSL levels are not equally spaced. The dephasing times used
in the dynamics calculations are taken to be Tinter = Tµ = 1.0 ps and Tintra =
Tµν = 1.5 ps (similar to those observed in Ref. [8]), while the excitonic population
decay time, Tµµ, is taken to be infinite.

We begin with the results for the THz radiation emitted when F =
12.5 kV/cm and the system is excited by a single Gaussian optical pulse with
a spectral width (FWHM) of 21 meV centered at ωc = ω−1 (see Fig. 1). We
include the excited in-plane states in addition to the dominant 1s excitonic states.
The states are calculated using the method given in Ref. [7]. In Fig. 2a, we plot the
calculated uniform internal intraband field, Eintra

0 , as a function of time for several
different pulse intensities (and hence different final carrier densities, ρ). Note that
at all densities there is a sudden increase in the magnitude of the internal field
when the pulse arrives. This field is due to the permanent dipole moments of the
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Fig. 1. The calculated absorption spectra of the BSSL in dc fields of 12.5 kV/cm and

15 kV/cm. The power spectrum of the exciting optical pulse used for the THz results

is also shown (broken line).

Fig. 2. The calculated intraband response to the Gaussian pulse for areal densities of

ρ = 9.0× 108 cm−2 (solid), ρ = 4.6× 109 cm−2 (dash), and ρ = 8.2× 109 cm−2 (dash-

dot). The internal intraband field, Eintra
0 (t), is shown as a function of time in (a), while

the emitted THz field is shown as a function of time in (b). The inset shows the power

spectra of the emitted THz fields.

excitons generated via the pulse, which for the 1s excitonic WSL states is given by
−eµd as discussed above. Thus, since we are generating primarily excitons with
µ < 0, this dc component of the intraband polarization is positive and the result-
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ing dc component of the generated intraband field, Eintra
0 , is less than zero, as

observed. In addition to the sudden creation of a dc component to the intraband
field, there is also a THz component arising from the Bloch-oscillating excitonic
wavepackets.

In Fig. 2b, we plot the radiated THz field, calculated from the second deriva-
tive of P intra

0 (t). The oscillations in the field arise both from the sudden initial
dipole and from the BOs, with the response at the later times being dominated by
the BOs. As can be seen, the frequency of the oscillations is strongly dependent on
the density, ρ. This density dependence is due to the fact that the dc component
of Eintra

0 (t) serves to oppose the applied dc field, leading to a net dc field that is
less than the applied field. As the internal fields can be as large as 2.4 kV/cm,
this is a sizeable effect. Thus, we observe a red-shift in the THz frequency with
increasing density.

We now turn to the results of DFWM calculations. The applied dc field is
F = 15 kV/cm, and the exciting pulse is Gaussian with the same spectral FWHM
of 21 meV as shown in Fig. 1. In these calculations, only the 1s heavy-hole excitons
are included. The neglect of excited in-plane excitonic states has been shown to be
justified for central laser frequencies well below the µ = 0 WSL frequency, as is the
case here [7]. The calculations are performed by including excitonic states with
the center of mass wave vectors, Kn = (n + 1)κ1 − nκ2 for n = −n0, . . . , n0 − 1,
where n0 is chosen so as to achieve convergence. In practice, we find that for the
densities used here, convergence is reached for n0 = 6.

In Fig. 3 we plot the spectrally-resolved DFWM (SR-DFWM) signal for a
sequence of delay times for a density, ρ = 9.3× 109 cm−2, with the pulse centered
at ωc = ω0 − 2.27ωB (i.e., close to the –2 WSL state). The spectral peaks are
associated with different excitonic states (as indicated in the figure). The peaks
do not occur precisely at the single-exciton energies, ωµ, due to the polarization-
-induced reduction of the applied dc field discussed above. More importantly, note
that the peak positions depend significantly on the time delay, τ21.

To see the peak oscillations more clearly, we plot in Fig. 4 the energy of the
µ = −1 peak relative to h̄ω−1 as a function of τ21 for ρ = 6.4 × 109 cm−2 for
different central laser positions. As can be seen, and in agreement with recent ex-
periments [9, 10], the peak’s energy oscillates as a function of τ21 with period given
approximately by τB ≡ 2π/ωB. The oscillation amplitude decreases as the central
laser frequency approaches ω0 since the motion becomes more like a breathing
mode the closer you come to the zero WSL state [9].

The peak oscillations can be largely understood as arising from quantum
interference between multiple paths from the ground state to the excitonic state,
(µ, 2κ2 −κ1). This can be seen through a simplified perturbative treatment illus-
trated in the inset to Fig. 3. In the left-hand path, an exciton with wave vector
κ2 and energy h̄ωop is created by the second optical pulse; it then scatters off the
κ2−κ1 grating into 2κ2−κ1, absorbing a photon of energy h̄ωG

intra ' 0,±h̄ωB. In
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Fig. 3. The SR-DFWM intensity versus frequency for ωc = ω0 − 2.27ωB and ρ =

9.3 × 109 cm−2 for a sequence of delay times. The inset shows the diagram for the

quantum interference described in the text.

Fig. 4. The µ = −1 SR-DFWM peak energy relative to h̄ω−1 versus τ21 for ρ =

6.4× 109 cm−2 for a series of different central laser frequencies. The curve offsets are a

real effect due to intraband renormalization of the dc field.

the right hand path, the exciton additionally interacts with the spatially uniform
field, Eintra

0 (t), absorbing a photon of energy h̄ω0
intra ' ±h̄ωB before reaching the

final state (µ, 2κ2 − κ1).
To understand how this two-path interference leads to peak oscillations, we

consider a simplified model wherein we assume that we have an intraband field,



The Interplay of Intraband and Interband Polarization . . . 63

Eintra
k (t), given by the second-order response. We then determine the expres-

sion for the DFWM interband response in the presence of this intraband field
and the applied optical fields. The final expression is rather complicated. How-
ever, the basic result is very similar to what one would obtain in the calcula-
tion of the interband response for the structure where the two paths are: (1)
direct linear absorption and (2) two-photon absorption, where the second pho-
ton is due to the component of the intraband field, Eintra

0 (t) at the Bloch fre-
quency [6]. Using this analysis, and retaining only resonant terms, we obtain
the expression, P

(L)
2κ2−κ1

(ω) ∼ (ω − ωµ+i/Tinter)−2, for the intraband polariza-

tion near ω = ωµ due to the left-hand path and the expression, P
(R)
2κ2−κ1

(ω) ∼
P

(L)
2κ2−κ1

(ω)Eintra
0 (ωB)/(ω − ωµ + i/Tinter), for the right-hand path polarization,

where E
intra(2)
0 (ωB) ∼ Ce−iωBτ21/2 cos(ωBτ21/2) is the approximate expression for

the amplitude of the intraband field at the Bloch frequency, and C is a positive
real constant. The oscillation of Eintra

0 (ωB) with time delay is due to alternating
constructive and destructive interference between the Bloch oscillating intraband
polarizations created by the first and second pulses.

Using the above three expressions, we see that the SR-DFWM signal (which
is proportional to the square of the total interband polarization) near the resonant
peak at ω = ωµ is given approximately by

I2κ2−κ1(ω) =
I0

[(ω − ωµ)2 + 1/T 2
inter]

2

{
1 +

C

[(ω − ωµ)2 + 1/T 2
inter]

×
[(

C

2
+ (ω − ωµ)

)
(1 + cos(ωBτ21)) +

sin(ωBτ21)
Tinter

]}
. (3)

Thus, for τ21 = τB/2, 3τB/2, . . . the peak is at ω = ωµ, while for τ21 = 0, τB, . . ., the
peak is shifted maximally to higher frequencies. This is approximately what is seen
in the results of the full calculation shown in Fig. 4. In addition, for intermediate
delay times of τ21 = −τB/4, 3τB/4, . . ., a dip may appear in the spectra at ω = ωµ.
Indeed, we observe such dips (or peak splitting) near τ21 = 0.2 ps and 0.6 ps
for ωc = ω0 − 1.72ωB, as evidenced by the sudden changes in the peak position
in Fig. 4.

Most of the features of the calculated peak oscillations agree with experi-
ment: the phase, frequency, dependence on ωc, and large amplitude at τ21 = 0,
are all in general agreement [9, 10]. However, the amplitude of the peak oscilla-
tion is considerably smaller than that obtained experimentally. For example, for
ωc = ω0−2.27ωB, and a density of 1010 cm−2, the calculated amplitude is roughly
0.6 meV, while the experimental amplitude is approximately 2.3 meV [10]. This
difference is likely caused by the screening of exciton–exciton interactions via in-
coherent carriers [3, 10].
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3. Conclusions

In summary, we applied the newly-developed infinite-order excitonic Bloch
equations to calculate the THz emission and DFWM signals from a BSSL. The
results show that the BSSL is a highly nonlinear system, with the interactions
between the intraband and interband polarizations creating density-dependent ef-
fects that go well beyond third order in the optical field.
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