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We formulate the problem of a two-level system in a linearly polarized

laser field in terms of a nonlinear Riccati-type differential equation and solve

the equation analytically in time intervals much shorter than half the optical

period. The analytical solutions for subsequent intervals are then stuck

together in an iterative procedure to cover the whole scale time of the laser

pulse. Very good quality of the iterative method is shown by recovering with

it a number of subtle effects met in earlier numerically calculated photon-

-emission spectra from model molecular ions, double quantum wells, atoms,

and semiconductors. The method is used to describe novel, carrier–envelope

offset phase effects in the region of extreme nonlinear optics, i.e., when two-

-level systems are exposed to pulses of only a few cycles in duration and

strength ensuring the Rabi frequency to approach the laser light frequence.

PACS numbers: 42.50.Md, 42.50.Hz, 42.65.Ky, 42.65.Re

1. Introduction

In the theory of light–matter interactions there is probably no more funda-
mental model than the two-level one [1]. Over the last decade, for example, the
model has succeeded in explaining the main features of propagation of strong
few-cycle pulses through atomic and semiconductor media [2–12], e.g., carrier
wave Rabi flopping, third-harmonic generation in disguise of second harmonic,
and carrier–envelope phase effects, to name a few. It has also made a basis for the
description of high-order harmonic generation from a single atom [13], a symmetric
molecular ion [14–16] and a double-well quantum structure [17–19] with emphasis
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on the strongly non-perturbative picture of the phenomenon and the occurrence
of peaks in the spectrum of coherently scattered light at the positions of even
harmonics. When applied to double wells, the model turned out to be successful
also in explaining the effect of laser control of tunneling [20].

Despite its dissemination in atomic, molecular, and solid state physics the
two-level model of light–matter interaction still suffers from the lack of exact ana-
lytical solution covering the whole range of laser intensities as well as pulse shapes
and durations. The analytical solutions known hitherto cover only some differ-
ent limiting cases. For instance, the most celebrated rotating-wave-approximation
(RWA) solution [1] is restricted to laser intensities ensuring the resonance Rabi
frequency, ΩR, to be much smaller than the laser frequency, ω. Beyond RWA, the
known analytical solutions include the non-RWA corrections along a perturbative
procedure (e.g. [21, 22]), either are valid in the so-called multiphoton excitation
region [14, 15] (ω ¿ ω21 along with ΩR ¿ ω21, where ω21 stands for the frequency
separation between the two levels) or in the quite opposite strong coupling region
[14–19] (ω À ω21 and ΩR À ω21). Probably, the only analytical solution cov-
ering the whole intensity region is the recent one of Tritschler et al. [23] for a
box-shaped pulse, but obtained within the so-called square-wave approximation
(SWA) consisting in replacing the actual time behavior of the field within half the
optical cycle by a square of a constant appropriately chosen magnitude. Being ap-
proximate, this solution was able to reproduce only qualitatively some features of
the exact numerical calculations, especially for the case of the resonant excitation
(ω = ω21), but was less convincing for distinctly off-resonant excitation.

The aim of our paper is to present a quick iterative procedure for the prob-
lem of the two-level system in linearly polarized laser field, based on an analytical
solution of the Schrödinger equation in very short time intervals. The analytical
solution turned out to be possible thanks to defining the problem of level popula-
tions in terms of a single nonlinear Riccati-type differential equation in conjunction
with dividing each halfcycle of the pulse into a number of narrow slices of equal
width and considering constant the electric field within each slice with a value
determined by the pulse function at the middle of the slice. The analytically
obtained solutions for all slices in the pulse are then stick together by a simple
recurrence formula relating the boundary conditions in the adjacent slices. For
each slice, this approach offers a simple analytical formula for the ratio of level
population amplitudes, resulting in equally simple analytical formulae for popula-
tion inversion, induced dipole moment, and spectrum of the radiation emitted by
this dipole. A good quality of the method is proved by showing that the resulting
photon-emission spectra reproduce the numerically calculated ones available in lit-
erature [8, 9, 13–19]. Moreover, the method indicates weak points of the square-
-wave solution of Tritschler et al. [23] and is shown to be particularly useful in the
area of extreme nonlinear optics [23], i.e., when few-cycle, strong pulses stimulate
significant population dynamics in a two-level system on a timescale of half the
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optical cycle. In particular we apply the iterative method to describe the recently
observed effect of pulse carrier–envelope offset phase on harmonic generation.

2. The analytical solution for short time intervals
and iterative method

When presenting our analytical solution for short time intervals we start with
the standard expansion ψ(t) = b1(t)|1〉+ b2(t)|2〉 for the wave function of the two-
-level system in a laser field, where |1〉 and |2〉 stands for the time-independent
opposite-parity eigenstates of the bare system with eigenfrequencies ω1 and ω2, re-
spectively. The above choice of ψ(t) with a complete neglect of continuous states
is justified only when the regime of strong coupling between the two bound states
(the Rabi frequency comparable to the laser light frequency) is achievable at laser
intensities not producing significant ionization. The systems to be considered,
with their large bound–bound transition dipole moments (molecular ions at large
internuclear distances, quantum wells, semiconductors), fall into this regime al-
ready at less than 10 TW/cm2 intensities at which ionization can be disregarded
to the first approximation. The time-dependent population amplitudes of the lev-
els, b1(t) and b2(t), are then governed [16] by the equation

i
d
dt

bk = ωkbk − Ω(t)bl(t), (1)

where both k and l run the values 1, 2 with the constraint l 6= k, and Ω(t) = ΩRh(t)
is the instantaneous Rabi frequency with ΩR = µε0/h̄ being the usual Rabi fre-
quency as determined by the dipole transition matrix element µ = 〈1|ez|2〉 and the
electric field amplitude ε0, while h(t) = f(t) sin(ωt+φ) describes the incident-field
evolution with f(t) having the sense of pulse shape (for pulses of at least few cycles
in duration), ω the carrier frequency and φ the carrier–envelope offset phase. The
latter is known [8, 9, 12, 24–27] to be a relevant quantity determining the response
of the system in the regime of few-cycle pulses.

Traditionally, there has been solved in different coupling regimes either a
set of two linear differential equations for bk with no RWA applied (e.g. [14–17])
or more often (e.g. [13–15, 19, 23]) the resulting set of three linear differential
equations for the Bloch vector components: u = 2Re(b∗1b2), v = 2Im(b∗1b2), w =
|b2|2 − |b1|2. Instead, we prefer to work with only one but nonlinear differential
equation for the ratio r(t) = b2(t)/b1(t) of the population amplitudes. Through
the population conservation law, |b1|2 + |b2|2 = 1, the above r determines directly
both the population inversion w = (|r|2 − 1)/(|r|2 + 1) and the induced dipole
moment d(t) = 〈ψ(t)|ez|ψ(t)〉 = µu = 2µRe(r)/(|r|2 + 1) and, consequently, the
spectrum of coherently scattered light as well. After differentiating r over time
and then using Eq. (1) one obtains [21, 22] r to fulfil the following differential
equation:
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i
dr
dt

= (r2 − 1)Ω(t) + ω21r, (2)

where ω21 = ω2 − ω1 is the frequency separation between the bare levels. This
equation falls into the family of nonlinear Riccati-type equations and a way for its
iterative solution results from the transformation

r(t) =
1

2Ω(t)
[
Ωeff(t)R(t)− ω21

]
, (3)

Ωeff(t) =
√

4Ω2(t) + ω2
21, (4)

converting Eq. (2) into

i
dR

dt
= (R2 − 1)

Ωeff

2
+ i

( ω21

Ωeff
R− 1

) ω21

ΩeffΩ
dΩ
dt

. (5)

To avoid the cumbersome second term on the right-hand side, including the deriva-
tive dΩ/dt, we divide the timescale of the pulse into a number of sufficiently narrow
intervals with tij ≤ tj ≤ tfj being the running time within the j-th interval. In each
interval of its width much shorter than half an optical cycle we approximate the
Rabi frequencies Ω(tj) and Ωeff(tj) as constants of the values which they actually
take in the middle (tmj ) of the interval. Under such an approximation, Eq. (5),
when adapted to the j-th interval looks like i(dRj/dtj) = (R2

j − 1)Ωeff
j /2, where

Ωeff
j = Ωeff(tj = tmj ). The resulting equation has straightforward analytical solu-

tion

Rj(tj) =
1− iRin

j cot
[
Ωeff

j (tj − tij)/2
]

Rin
j − i cot

[
Ωeff

j (tj − tij)/2
] , (6)

where Rin
j = Rj(tj = tij) is the initial value of Rj , i.e., that at the beginning

of the j-th interval. For the extreme time in the interval, tj = tfj , we have
Rj(tj = tfj) = Rin

j+1, resulting in the recurrence formula for the initial condi-
tions

Rin
j+1 =

1− iRin
j cot

[
Ωeff

j (tfj − tij)/2
]

Rin
j − i cot

[
Ωeff

j (tfj − tij)/2
] . (7)

As a consequence of Eqs. (6) and (7) we obtain from Eq. (3) the solution for rj(tj):

rj(tj) =
2Ωj −

{
ω21 + iΩeff

j cot
[
Ωeff

j (tj − tij)/2
]}

rin
j

ω21−iΩeff
j cot

[
Ωeff

j (tj − tij)/2
]
+ 2Ωjrin

j

(8)

and also the recurrence formula for the initial conditions, rin
j , at the beginnings of

subsequent time intervals

rin
j+1 =

2Ωj −
{
ω21 + iΩeff

j cot
[
Ωeff

j (tfj − tij)/2
]}

rin
j

ω21 − iΩeff
j cot

[
Ωeff

j (tfj − tij)/2
]
+ 2Ωjrin

j

, (9)

where Ωeff
j =

√
4Ω2

j + ω2
21 with Ωj = ΩRhj and hj = f(tmj ) sin(ωtmj + φ). The
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solutions in the form of Eqs. (8) and (9) allow us to obtain population inversion,
induced dipole moment, and electric field of coherently scattered light within the
subsequent time intervals, tij ≤ tj ≤ tfj , and to stick the solutions for the intervals
to cover the whole timescale of the incident pulse.

Before writing down the final formulae it is convenient to introduce the
dimensionless strength parameter x = ΩR/ω, the dimensionless level separation
parameter y = ω21/ω and the dimensionless time parameter τ = ωt, where 0 ≤
τ ≤ 2πN for a N -cycle pulse. Then, we divide each halfcycle in the τ domain
into K intervals of width π/K each, letting j to fall into the range 1 ≤ j ≤ 2NK.
Within the j-th interval, the running time covers the range (j − 1) π

K = τ i
j ≤ τj ≤

τ f
j = j π

K and the middle of the interval occurs at τm
j = j π

K − π
2K . Also, we make

the replacement rin
j = Ij and introduce the normalized effective Rabi frequency

within the j-th interval as xeff
j = Ωeff

j /ω =
√

4x2
j + y2, where xj = xhj with

hj = f(τm
j ) sin(τm

j + φ). In this language the recurrence formula of Eq. (9) reads

Ij+1 =
2xj −

[
y + ixeff

j cot
(
πxeff

j /2K
)]

Ij

y − ixeff
j cot

(
πxeff

j /2K
)

+ 2xjIj

. (10)

For a given field-system parameters x, y, φ, f(τ), Eq. (10) allows us to generate
the initial conditions for all subsequent 2NK time intervals from the only known
initial condition I1 for the first interval (I1 = 0 throughout this paper). Having
generated the initial conditions we calculate the evolution of population inversion
within the j-th time interval from

wj(τj) =
−1

(1 + |Ij |2)(xeff
j )2

{
y

[
y(1− |Ij |2) + 4xjRe(Ij)

]

+4xj

[
xj(1− |Ij |2)− yRe(Ij)

]
cos

[
xeff

j (τj − τ i
j)

]

−4xjx
eff
j Im(Ij) sin

[
xeff

j (τj − τ i
j)

] }
, (11)

while the evolution of the induced dipole moment from

dj(τj) =
2µ

(1 + |Ij |2)(xeff
j )2

×
{

xj

[
y(1− |Ij |2) + 4xjRe(Ij)

]− y
[
xj(1− |Ij |2)− yRe(Ij)

]

× cos
[
xeff

j (τj − τ i
j)

]
+ yxeff

j Im(Ij) sin
[
xeff

j (τj − τ i
j)

] }
, (12)

where 0 ≤ τj − τ i
j ≤ π/K within each interval. Taking the second derivative of

Eq. (12) with respect to τj results in the electric field of the coherently scattered
light in the forward direction
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εj(τj) ∼ 2µy

1 + |Ij |2

×
{ [

xj(1− |Ij |2)− yRe(Ij)
]
cos

[
xeff

j (τj − τ i
j)

]

−xeff
j Im(Ij) sin

[
xeff

j (τj − τ i
j)

] }
. (13)

To study spectra we need to take Fourier transforms (τj → z, where z is the
spectrometer frequency in units of the incident light frequency ω) of Eqs. (12) and
(13) with the results

dj(z) =
µe−iz(j−1)π/K

(1 + |Ij |2)(xeff
j )2

{
i
[
xj

[
y(1− |Ij |2) + 4xjRe(Ij)

]
2f0

j

−y
[
xj(1− |Ij |2)− yRe(Ij)

]
(f−1

j + f+1
j )

]
+ yxeff

j Im(Ij)(f−1
j − f+1

j )
}

(14)

and

εj(z) ∼ µye−iz(j−1)π/K

1 + |Ij |2
×{

i
[
xj(1− |Ij |2)− yRe(Ij)

]
(f−1

j + f+1
j )− xeff

j Im(Ij)(f−1
j − f+1

j )
}

, (15)

where

fq
j =

e−i(z+qxeff
j )π/K − 1

z + qxeff
j

(16)

with q = 0,±1. Finally, to cover the whole timescale of the pulse one needs to
sum up Eqs. (11)–(15) over j, taking into account Eqs. (10) and (16).

3. Quality of the iterative method

We have extensively examined the accuracy of the iterative method
(Eqs. (10)−(16)) in wide ranges of pulse shapes f(τ), pulse strengths x, carrier
frequencies y, and carrier–envelope phases φ. In any case the method was found
to be able to fit the results of direct numerical integrations of the Riccati-type
Eq. (2), provided that K, i.e., the number of intervals into which we divide each
optical halfcycle was chosen appropriately. Generally, the higher K the better was
the quality of the method, as expected. However, K of the order of only a few
units or at most ten appeared to be sufficient to ensure good-quality of the method
for not too strong pulses (x ≤ 1). For extremely strong pulses (x À 1), generating
fast population dynamics on a timescale of an optical cycle, an increase in K was
needed for the method to reproduce all details of the numerical solution. However,
even in the latter case only a little of computer time was consumed to accomplish
successfully the iterative procedure.
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To exemplify the effect of better quality of the iterative method when increas-
ing K, let us focus on the one-photon resonance (y = 1) by a pulse of moderate
strength (x = 1). We intentionally take this case because it is covered neither by
the strong-coupling (y ¿ 1 and x À y) analytical solution of Ivanov et al. [16, 17]
nor by the multiphoton-excitation (y À 1 and x ¿ y) analytical solution of Zuo
et al. [14, 15]. Moreover, to assess the SWA solution of Tritschler et al. [23] we
choose a box-shaped (f(τ) = 1) sine-like (φ = 0) pulse. The SWA, originally ap-
plied to the system of optical Bloch equations, consisted in replacing the sequence
of halfcycles of the electric field by the sequence of identical squares, each of a
height ensuring the areas under the halfcycle and square to be equal. In terms
of our short-time-interval analytical solution, SWA corresponds to the choice of
K = 1 (hj = (−1)j+1) and to rescaling x → 2

π x resulting in xj = (−1)j+1 2
π x.

In this limit our equations for wj(τj) and dj(τj) convert into those of Tritschler
et al. obtained by a different analytical approach exploiting the Bloch equations.
For the pulse of N = 2 cycles in duration, now available in the laboratory prac-
tice (e.g. [23]), we show in Fig. 1a the iteratively calculated effect of K on the
population inversion (solid lines), and compare this result with that obtained by

Fig. 1a, b. The evolution of population inversion w versus K under the box-shaped

(f(τ) = 1) sine-like (φ = 0) two-cycle (N = 2) pulse of x = y = 1. Solid lines —

the results of the iterative procedure exploiting Eq. (11), dotted lines — the results of

direct numerical integration of the Riccati-type Eq. (2) for r, dashed line — the results

of square wave approximation.
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integrating numerically the Riccati-type Eq. (2) for r (dotted line). As seen, the
choice of K = 10 ensures nearly perfect coincidence between the two approaches.
On the other hand, Fig. 1b provides a comparison between our iterative results
at K = 10 and the SWA results (dashed line) leading to a conclusion that the
square-wave approximation can be used only to general predictions of qualitative
nature.

To prove a good quality of our iterative method we now recover with it some
numerically calculated spectra of light coherently scattered by two-level systems,
available in the literature. One such a two-level system that has received a lot of
attention in the past is the lowest pair of different-symmetry electronic levels of
the H+

2 molecular ion (1σg and 1σu), a pair being well isolated from other levels
particularly at large internuclear distances. In particular, Zuo et al. show in Fig. 6b
of their paper [15] the two-level numerically calculated photon-emission spectrum
of H+

2 in the near-resonance region translating into our y = 1.1 and x = 1.86.
The spectrum was obtained by assuming the f(τ) cos(τ) electric field with f(τ)
Gaussian increasing by 10 optical cycles (f(τ) = exp

{−[(τ − 20π)/10π]2
}

for
0 ≤ τ ≤ 20π) and then keeping a constant value up to 30 cycles (f(τ) = 1 for
20π < τ ≤ 60π). For the above conditions, we apply our Eq. (14) (with µ put
to 1) along with Eq. (10) to present in Fig. 2a the iteratively calculated spectrum
|d(z)|2 = |∑j dj(z)|2 with 1 ≤ j ≤ 2NK = 60K. To achieve high resolution
of our spectrum we chose K = 100 and we will maintain this choice through all
other figures to be presented. Our spectrum of Fig. 2a consists of the Mollow
triplets occurring at each odd-order harmonic (1, 3, 5, and 7) with the same side
band separation within the triplets. This iteratively obtained structure is in full
agreement with the numerical spectrum of Zuo et al. (Fig. 6b in [15]). In a different
paper Zuo et al. [14] give, for the f(τ) cos τ = cos τ field, their numerical spectrum
for the same system but under the so-called strong-coupling conditions meaning
in our notation y = 0.445 and x = 1.9 (x/y = ΩR/ω21 = 4.27). Under these
conditions our iterative spectrum generated from Eq. (14) for N = 30 cycle pulse
is shown in Fig. 2b. An interesting feature of the iterative spectrum are (besides
the familiar odd-order harmonics 3, 5, and 7) the doublets around the positions
of even harmonics caused by the large Rabi splittings of the odd harmonics. This
spectrum is a counterpart of the numerical spectrum of Zuo et al. (Fig. 7 in [14]).

Also Ivanov et al. [16, 17] have calculated the emission spectra from molecu-
lar ions but using their analytical formula (Eq. (52) in [16]) derived in the limiting
case of extremely strong coupling (y ¿ 1 and x À y in our language). We applied
our Eq. (14) to this region and obtained with it the results shown in Fig. 3. This
figure presents the heights of the odd-harmonic peaks, H(n), normalized to the
third harmonic peak, for y = 0.1 and two values of x = 14.5 and 15, respectively.
We have assumed a 30-cycle pulse of the form f(τ) cos τ with f(τ) = 1. Our Fig. 3,
obtained along the iterative procedure, coincides perfectly with the appropriate
results of Ivanov and Corkum (Fig. 3 in [16]).
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Fig. 2. Photon-emission spectra, |d(z)|2, from a model two-level molecular hydrogen

ion, calculated iteratively by using Eq. (14). (a) Near-resonance case (y = 1.1 and

x = 1.86) for the f(τ) cos(τ) pulse with f(τ) Gaussian increasing by 10 optical cycles

and then keeping the value of 1 up to 30 cycles; (b) strong-coupling case (y = 0.445 and

x = 1.9) for the 30-cycle f(τ) cos(τ) pulse with f(τ) = 1. The conditions are as those

in the papers by Zuo et al. (Fig. 6b in [15] and Fig. 7 in [14], respectively). For the

high-resolution of the presented spectra we choose K = 100.

Fig. 3. Normalized heights, H(n), of the odd-harmonic peaks calculated iteratively

with the use of Eq. (14), for the case of extremely strong coupling (y ¿ 1, x À y) of

the two-level system to 30-cycle pulse of f(τ) cos(τ) form with f(τ) = 1. The conditions

are as those in the paper by Ivanov and Corkum (Fig. 3 in [16]).

A different place where two-level approximation has appeared to be reliable
is a symmetric double quantum well [17–20] extensively studied in the context of
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laser control of tunneling and symmetry breaking with strong short pulses. The
latter effect results in the appearance of spectral peaks at the positions of even
harmonics from the systems with inversion symmetry. For example, Levinson et
al. (Fig. 2 in their paper [19]) give the spectra from the double-well structure ob-
tained by integrating numerically the set of three Bloch equations for the f(τ) cos τ

pulse with f(τ) = 1. The frequency-strength parameters in their numerical calcu-
lations fall into the strong-coupling region (y = 0.625, x = 1.25 in one case (their
Fig. 2a) and y = 0.589, x = 1.178 in the other case (their Fig. 2b)). For the
above two sets of frequency-strength parameters we show in Fig. 4 our iterative
spectra resulting from Eq. (14) for the 30-cycle pulse assumed. The asymmetric
doublets at the positions of the second and fourth harmonics, formed when using
the first set of parameters (Fig. 4a), are seen to coalesce into single peaks when
taking the other set (Fig. 4b). Moreover, the second set of parameters results
in shifting the low-frequency component of the spectrum towards zero. Both be-
haviors of our iteratively obtained spectra are the same as those in the numerical
spectra of Levinson et al. (Fig. 2 in [19]) and are connected with approaching the
so-called accidental degeneracy of two Floquet states of the system [17, 18, 20]
at some parameters. The parameter x from the second set does nearly satisfy

Fig. 4. Spectra from a symmetric double-well structure obtained iteratively by apply-

ing Eq. (14), for 30-cycle pulse of f(τ) cos(τ) type with f(τ) = 1 and frequency-strength

parameters y = 0.625, x = 1.25 (a) and y = 0.589, x = 1.178 (b). The conditions are

as those in the paper by Levinson et al. (Fig. 2 in [19]).
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the condition of the accidental degeneracy, i.e., it ensures for the Bessel function
J0(2x) to drop to zero [17, 20].

Mücke et al. [8] have also used the two-level model to simulate numerically
the spectra of light emitted around the third harmonic from GaAs semiconductor
exposed to 5 fs pulse of sech(τ/τ0) cos τ form, where τ0 = τFWHM/1.763. The
results of their simulations (Fig. 2 in [8]) reveal the evolution of the third-harmonic
peak into a doublet structure when increasing the envelope pulse area A. For the
sech(τ/τ0) envelope, the area A is related to our x parameter through A = πτ0x =
(2π2/1.763)NFWHMx, where NFWHM is the full width at half maximum (FWHM)
measured in optical cycles (NFWHM = 1.71 in this case). For the conditions close
to those of Mücke et al., we present in Fig. 5 our iterative spectra, obtained from
Eq. (15). Our spectra are a qualitative reproduction of the numerical spectra
of Mücke et al. (Fig. 2 in [8]). A possible source of only qualitative agreement
in this case is that our spectra are the pure response of the system, i.e., with

Fig. 5. Evolution of the third-harmonic peak into a doublet with increasing pulse

strength parameter x, calculated iteratively with the use of Eq. (15). The conditions

(5 fs pulse of sech(τ/τ0) cos(τ) form) are close to those of numerical simulations by

Mücke et al. (Fig. 2 in [8]). The positions of peaks in the doublet agree with those from

numerical simulations but the heights are reversed.
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no propagation effects included which were naturally taken into account in the
simulations of Mücke et al. by coupling the Bloch equations to the Maxwell
equations.

4. Carrier–envelope phase effects

We now apply the iterative method to calculate, for a particular case, the
dependence of the two-level-system response on the phase difference (φ) between
carrier wave and the maximum of the pulse envelope. To be specific, we make
recurrence to the carrier-wave Rabi flopping originally studied numerically by
Hughes [4] for a resonant (y = 1) pulse h(τ) = sech(τ/τ0) sin(τ) of a fixed FWHM
(NFWHM = 1.72) but different pulse envelopes A = 19.24x. By coupling the op-
tical Bloch equations to the Maxwell equations, Hughes considered propagation
of the A = 2lπ pulses through a two-level medium, where l was an integer. For
the areas A = 6π−14π of Hughes, the left column of Fig. 6 shows population
differences, |b1|2 − |b2|2, versus time obtained by our iterative procedure with the
use of Eq. (11). Our results practically do not differ from the original numerical
results obtained by Hughes just near the front-face of the two-level material, i.e.,
where the propagation effects were not important yet (the left column of Fig. 3 in
[4]). Our graphs confirm the original result of Hughes on incomplete Rabi flops
at A ≥ 8π. On the other hand, the right column of our Fig. 6 shows our itera-
tively obtained population differences but for the h(τ) = sech(τ/τ0)cos(τ) pulse,
i.e., the pulse with its carrier–envelope phase φ shifted by π/2 with respect to the
pulse used by Hughes. Some differences caused by this shift are clearly seen in
the middle parts of the population difference curves. These parts correspond to
the times for which the pulse intensity has already evolved to its high values. The
main differences introduced by changing the carrier–envelope phase φ consist in
either converting the double peaks into single ones (and vice versa) or inverting
the asymmetry in double peaks.

The above φ-sensitivity of population inversion produces the dependence of
the spectrum of scattered light on carrier–envelope phase. In Fig. 7a, we show
the spectrum calculated iteratively with the use of Eq. (15) for the Hughes pulse
h(τ) = sech(τ/τ0) sin(τ + φ), i.e., with φ = 0, NFWHM = 1.72, y = 1 and x = 1.31
(this x corresponds to the envelope pulse area A = 8π). Except the spectral peak
at the fundamental frequency (z = 1), one sees a well pronounced peak at the
position of second harmonic (z = 2) because the chosen x is in the vicinity of the
value (1.178) ensuring the accidental degeneracy (J0(2x) = 0) of the Floquet states
of the system (compare Fig. 4 and its discussion). A similar peak around z = 2
was found by Tritschler et al. (Fig. 1a in [12]) on the basis of their numerical
solution of the two-level Bloch equations for a different pulse envelope, namely
sinc(τ/τ0) = sin(τ/τ0)/(τ/τ0) instead of sech(τ/τ0), and different light–matter
parameters (NFWHM = 1.81, y = 2, x = 0.76). In addition to Fig. 7a, we show
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Fig. 6. Population difference, |b1|2−|b2|2, between the ground and excited states versus

time, for h(τ) = sech(τ/τ0) sin(τ) pulse (left column) and h(τ) = sech(τ/τ0) cos(τ) pulse

(right column), i.e., the pulses with their carrier–envelope phases shifted to each other

by π/2. The graphs were obtained iteratively by using Eq. (11). The chosen parameters:

NFWHM = 1.72, y = 1, while the envelope pulse areas A and the corresponding strength

parameters x are shown in the graphs. The left graphs reproduce the fully numerical

results of Hughes (Fig. 3 in [4]).
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Fig. 7. (a) The iteratively calculated (from Eq. (15)) photon-emission spectrum gen-

erated by h(τ) = sech(τ/τ0) sin(τ + φ) pulse of the parameters φ = 0, NFWHM = 1.72,

y = 1 and x = 1.31 (8π pulse). (b) The calculated (from Eq. (15)) height of the spectral

peak at the position of second harmonic (z = 2) versus carrier–envelope offset phase φ.

The φ-dependence with a period of π agrees with the results of fully numerical calcu-

lations by other authors [9, 12] for different pulse shapes and light–matter parameters.

(c) The same as (b) but for the small peak at z = 1.5 in (a).

in Fig. 7b the dependence (calculated iteratively from Eq. (15)) of the height of
the spectral peak at z = 2 on the carrier–envelope phase 0 ≤ φ ≤ 2π in the pulse
h(τ) = sech(τ/τ0) sin(τ +φ). The φ-dependence is well seen and has a period of π

in agreement with fully numerical calculations of Tritschler et al. [12] and Mücke
et al. (Fig. 1b in [9]) exploiting the optical Bloch equations. The same periodicity
is seen in Fig. 7c corresponding to the small peak in Fig. 7a around z = 1.5.

5. A simpler version of the iterative method

We have checked that the results shown in Figs. 1–7 are also obtainable
from a simpler version of Eqs. (10)–(13) consuming less of computer time. This
version is obtained by, first, replacing τj in Eqs. (11)–(13) by its extreme value
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τj → τ f
j = jπ/K and, then, choosing K sufficiently large for the argument of the in-

herent trigonometric functions to be a small quantity (πxeff
j /K ¿ 1). In this limit,

the trigonometric functions are replaced by their leading terms (cos(πxeff
j /K) → 1

and sin(πxeff
j /K) → πxeff

j /K → 0) resulting in the mentioned simpler forms of
Eqs. (11)–(13). These simpler equations provide us with the population inversion,
wj , induced dipole moment, dj , and electric field of scattered light, εj , at 2NK

discrete time points τj = jπ/K (1 ≤ j ≤ 2NK) equally separated by π/K. The
required quantities Ij are now to be found from the iterative Eq. (10) simplified by
the replacement cot(πxeff

j /2K) → 2K/πxeff
j . The advantage of the above simplifi-

cations is a considerable shortening of the calculation time of a personal computer
used to find all Ij , wj , dj , and εj . When calculating spectra of scattered light
(d(z), ε(z)) it is then recommended to apply the discrete Fourier transform to
the list of the dj or/and εj values, instead of Eq. (14) or/and Eq. (15). In the
above simpler version, the efficiency of our iterative method is competitive with
the traditional approach based on the system of optical Bloch equations with no
rotating-wave approximation. Typically, a few minutes is enough for a standard
personal computer to get full information from our method, i.e., the dependencies
w(τ), d(τ), ε(τ), d(z), and ε(z), for a few-cycle incident pulse of arbitrary shape
and strength from the field of extreme optics (x ≈ 1).

6. Summary

On the basis of a nonlinear Riccati-type equation, analytically solved in very
short time intervals (shorter than half the optical period), we have formulated
an effective iterative procedure for the problem of a two-level system exposed to
a linearly polarized electromagnetic pulse. For different light–matter couplings
(from weak through moderate to strong ones) we have proved very good quality of
the procedure by recovering with it a number of subtle effects met in the previous
numerically calculated photon-emission spectra and population inversion. Also,
we have applied the iterative procedure to describe carrier–envelope phase effects
in extreme nonlinear optics, particularly in population inversion and spectrum of
coherently scattered light (in the regime of few-cycle pulses, these carrier–envelope
phase effects are of current interest [24–29]). We would like to stress that no such
detailed description of spectra of light scattered by two-level systems, as provided
by our iterative method, is possible in the framework of the fully analytical but
approximate (adiabatic) continuous-fraction theory of Plaja and Roso-Franco [30].
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[25] D.B. Milošević, G.G. Paulus, W. Becker, Phys. Rev. Lett. 89, 153001 (2002).

[26] G.G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius,
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