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Cross-sections for elastic scattering of muonic hydrogen on helium nu-

clei, (hµ)1s + He++, where h and He++ stands for a hydrogen and a he-

lium isotope nucleus, respectively, were calculated in the one-level adiabatic

approximation for a range of collision energies from 0 to 50 eV. Bound

states and energy levels of (hµHe)++ molecular ions were also calculated

and compared with their Born–Oppenheimer counterparts. It is shown that

adiabatic corrections are responsible for proper positions of the Ramsauer–

Townsend minima in (hµ)1s + He++ elastic scattering and, at the same time,

they significantly influence bound states and energy levels of (Heµh)++ and

(Heπh)++ ions. Calculations were performed in the frame of the phase-

-function method.

PACS numbers: 34.60.+z, 36.10.Gv

1. Introduction

Atomic and molecular processes induced by negative muons in gaseous hy-
drogen and hydrogen–helium mixtures have been studied for over five decades [1].
The studies have been motivated by possible practical use of energy released in nu-
clear syntheses occurring inside muonic molecular ions, e.g. (dµt)+ or (3Heµd)++

(hence the common name of the processes, the muon catalyzed fusion (µCF) [2])
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and by such fundamental questions of physics as isotope invariance and charge sym-
metry of strong interactions at very slow collisions† [3]. At the same time, the µCF
processes form an unavoidable background in experimental study of weak muon
capture by hydrogen and helium isotope nuclei [4]. To extract the corresponding
capture rates from different spin states of muonic atoms their spin-states pop-
ulation determined by collision-induced deexcitation processes has to be known.
The main µCF processes that are still imperfectly understood and need further
intensive theoretical and experimental investigation are listed here:

— formation of excited muonic atoms by direct muon capture into an atomic
orbit [5] or by muon transfer processes between excited states of muonic atoms [6];

— elastic scattering of the ground-state or excited muonic atoms in collisions
with hydrogen atoms or molecules [7–9];

— deexcitation of muonic atoms via the Auger [10] or Coulomb deexcitation
processes [11];

— formation of muonic molecules in collisions of muonic hydrogen atoms
with hydrogen molecules [2] or helium atoms [12];

— nuclear synthesis reactions occurring inside muonic molecules [13].
Exemplary scheme of µCF processes in D-3He mixture is presented in Fig. 1.

Arrows indicating transitions are labeled by corresponding reaction rates,
λ = σN0V , where σ denotes cross-section, N0 = 4.25 × 1022 cm−3 is the liquid
hydrogen density (LHD), and V is the collision velocity. Details about the pro-
cesses can be found in Refs. [2–4, 12–14]. As indicated in Fig. 1, the muon freed
after the fusion may start another µCF cycle. The number of cycles is practi-
cally limited by muon sticking to Z > 1 nuclei initially present in a mixture or
produced in synthesis reactions. Theoretical study of µCF processes comprises
different theoretical methods of atomic and molecular physics, e.g. variational
methods, adiabatic spherical [15, 16] and hyper-spherical expansion method [17],
quantum Monte Carlo [18], and Faddeev equations [19]. A lot of important results
for h−µ−He++ systems have been obtained using adiabatic expansion method
[16], in particular, for quasi-stationary states, (hµHe)++, usually called muonic
molecules. These states correspond to very narrow Feshbach-type resonances in
h + (Heµ)+1s scattering for the total angular momentum of the three particle J = 0,
1, and 2. Positions of the resonances were calculated in Refs. [20–22] in the frame of
the nonadiabatic coupled-rearrangement-channel, the two-channel hyper-spherical
expansion method, and complex-coordinate-rotation method, respectively (see also
the review article [23]). The resonances are situated from 0.134 eV to 81.335 eV
below (hµ)1s threshold. Widths of the resonances for h = d are of order of 10−4 eV
for both 3He and 4He [20]. The corresponding quasi-stationary states, (hµHe)++

J ,
have a rich experimental evidence. They are formed in room temperature H–He
gaseous targets due to collision of the ground state muonic hydrogen with a helium

†Collision energy of nuclei inside muonic molecules estimated from the uncertainty principle

is of order of 1 keV. Such slow collisions are not reachable in accelerator experiments.
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Fig. 1. Scheme of µ-atomic and µ-molecular processes occurring in D–3He mixture

exposed on negative muons beam.

atom [12]:

(hµ)1s+He → [(Heµh)++
J , e]+ + e.

The subsequent radiative decay of the resonances

(Heµh)++
J → (Heµ)+1s + h + γ,

which result in muon transfer to helium, were observed in a lot of experiments [24]
by measuring of the corresponding γ-radiation spectra.

Much broader resonances in d−µ−4He++ and t−µ−4He++ systems with
the total angular momentum J = 0 and 1 (of Feshbach-type also) were found
in Refs. [25] and [26]. The resonances are situated from 345.6 eV to 355.3 eV
below (αµ)n=4 threshold [25] and from 96.0 eV to 0.6 eV below (tµ)2s threshold
[26]. They correspond to excited quasi-stationary states of (4Heµh)++

J system
with both decay channels, (Heµ)+ + h and (hµ) + He++, open. A possible
formation mechanism of such states in H–He gaseous mixtures was proposed in
Ref. [26], however, as far as we know, it has no experimental evidence still. Simple
calculation shows that all of the resonances are located by more than 1.4 keV
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above (hµ)1s thresholds. Therefore, one can state a question about an existence of
resonances located just above (hµ)1s thresholds. We answer this question in the
present paper.

The two channels involved in calculation in paper [21], h + (Heµ)+1s and
(hµ)1s + He++, correspond to 1sσ and 2pσ muon states of the two-center Coulomb
problem, respectively.

However, it is possible to obtain quite accurate ro-vibrational energy levels,
εJv, of the quasi-stationary states using the one-level adiabatic approximation for
the 2pσ state. It is due to the fact that coupling terms of the potential matrix
corresponding to the two-level treatment are much smaller than the diagonal ones
in this region of the inter-nuclear separation, R ≥ 4aµ (aµ is the muonic atom Bohr
radius), where the 2pσ-component of the total wave function is localized [27]. The
corresponding results, presented for the first time in Ref. [12], differ by several
percent only from the ones obtained later by several authors using variational
method for many-thousand-terms trial wave functions [20, 22, 26], as well as the
two-level approximation [21, 27, 28].

At the same time, the adiabatic one-level approximation seems also to be
valid in calculation of elastic cross-sections for slow (hµ)1s + He++ collisions.
Justification of the method is the same here as for molecular states because the
corresponding adiabatic 2pσ-potential has a steep slope (see Fig. 4 below). Conse-
quently, the left-hand turning point shifts only slightly towards smaller R when the
energy increases from εJv to about 50 eV. Cross-sections for elastic (pµ)1s+3He++

scattering were calculated in Ref. [29] in the frame of the two-level approximation
including s and p partial waves. The Ramsauer–Townsend effect was observed
at about 0.2 eV. On the other hand, the corresponding one-level calculation for
2pσ state with and without inclusion of electron screening of a helium nucleus was
performed in Ref. [30] in adiabatic approximation for s and p partial waves for all
hydrogen and helium isotopes. However, the unscreened s-wave cross-sections for
elastic (pµ)1s+3He++ scattering significantly differ from the corresponding ones
obtained in the present paper using the same method of calculation and from the
two-level results of Ref. [29].

Similar, i.e. one-level calculation of elastic scattering of the ground state pµ

atoms from C, N, O, and F nuclei are presented in Ref. [31]. Results were obtained,
however, in the Born–Oppenheimer (B–O) approximation. Due to presence of
quasi-crossings of terms involved in p−µ−Z systems, where Z > 2 [32], the effec-
tive one-level potential was constructed from different molecular terms in corre-
sponding areas of the inter-nuclear separation R. Low energy resonances in partial
cross-sections (i.e. shape resonances) were found for collision energies below 2 eV.

This paper is arranged as follows. The adiabatic expansion method for
three-body h−µ−He++ Coulomb problem is shortly described in Sec. 2. The
phase-function method for one-level scattering- and bound-states is described
in Sec. 3. Cross-sections for (hµ)1s + He++ elastic collisions calculated in the
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one-level adiabatic approximation for partial waves J = 0 ÷ 10 and collision en-
ergies 0 ≤ ε ≤ 50 eV are presented in Sec. 4 together with their B–O counter-
parts. The influence of adiabatic corrections on bound-states and energy levels of
(Heµh)++ and (Heπh)++ ions are also presented in Sec. 4. The obtained results
are summarized in Sec. 5.

2. Adiabatic expansion method for h−µ−He++ system

Coordinates describing three particle system, h−µ−He++, are presented in
Fig. 2. The muon position r is reckoned from the middle of R. After separation of

Fig. 2. Coordinates used for description of He−µ−h system.

the center-of-mass motion the non-relativistic Hamiltonian for h−µ−He++ system
receives the form (in atomic units e = me = h̄ = 1)

H = − 1
2M

[∇R + (κ/2)∇r]
2 − 1

2m0
∇2

r −
2

|r + R/2| −
1

|r −R/2| +
2
R

, (1)

where

M−1 = M−1
He + M−1

h , m−1
0 = m−1

µ + (MHe + Mh)−1

and

κ = (MHe −Mh)/(MHe + Mh).

Asymptotic form of h−µ−He++ system corresponding to (hµ)1s + He++ channel
suggests, however, another splitting of the total Hamiltonian in which the reduced
mass of the muonic atom, m−1

a = M−1
h + m−1

µ , will appear explicitly instead of
m0 [16] (below we use the µ-atomic units (µau), e = h̄ = ma = 1)

H = T + Hµ +
2
R

, (2)

where
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T = − 1
2M

{
[∇R + (κ/2)∇r]2 − [(κ + 1)/2]2∇2

r

}
, (3)

Hµ = −1
2
∇2

r −
2

|r + R/2| −
1

|r −R/2| . (4)

With total Hamiltonian (2) commutes the total angular momentum operator for
the three particle system, J , its z-axis projection, Jz, and the total parity op-
erator, P (R → −R, r → −r). Eigenfunctions of the Hamiltonian in the total
angular momentum representation read [16]:

Ψλ
JM (r, R) =

J∑
m=0

DJλ
mM (Φ,Θ , ϕ)F Jλ

m (ξ, η,R), (5)

where DJλ
mM (Φ,Θ , ϕ), called the symmetrized Wigner functions, are eigenstates of

J2, Jz, and P operators

J2DJλ
mM = J(J + 1)DJλ

mM ,

JzDJλ
mM = MDJλ

mM ,

PDJλ
mM = λDJλ

mM , λ = ±(−1)J ,

and are expressed by usual Wigner functions [33], DJ
mM (Φ,Θ , ϕ), in the following

way:

DJλ
mM (Φ,Θ , ϕ) =

√
2J + 1

16π2(1 + δm0)
[(−1)mDJ

mM (Φ,Θ , 0) exp(imϕ)

+(−1)JλDJ
−mM (Φ,Θ , 0) exp(−imϕ)] (6)

with m being an eigenvalue of R · J/R operator. The muon position, r, is
expressed in the body-fixed reference frame by prolate spheroidal coordinates,
η = (r1 − r2)/R, ξ = (r1 + r2)/R, and ϕ the azimuth angle measured in the plane
perpendicular to R; (Θ ,Φ) are spherical angles of vector R.

Adiabatic basis set for h−µ−He++ system is formed by eigenfunctions
φi(R; ξ, η) of muonic Hamiltonian Hµ(R),

Hµ(R)φi(R; ξ, η) = Ei(R)φi(R; ξ, η), (7)

corresponding to the muon moving in the Coulomb field of the two resting nuclei,
h and He++, separated by R. The index i represents a set of quantum numbers de-
scribing bound- or continuous-spectrum states of the muon. Muonic bound states
are usually labeled by spherical quantum numbers in the united atom classification
(R → 0), i.e. i = (Nlm), whereas i = (kµlm) describes a continuous-spectrum
state, where kµ is the muon impulse at r →∞. The corresponding energy eigenval-
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ues (molecular terms) are denoted by Ei(R). Adiabatic expansion of the “radial”
function, F Jλ

m (ξ, η, R), is usually written in the form [16]:

F Jλ
m (ξ, η, R) =

∞∑

N=1

N−1∑

l=0

φNlm(R; ξ, η)χJλ
Nlm(R)R−1

+
∞∑

l=0

∫ ∞

0

dkµφkµlm(R; ξ, η)χJλ
kµlm(R)R−1, (8)

where functions χJλ
i (R) describe relative motion of the nuclei.

The lower lying molecular term that supports a potential well in h–He++

interaction in h−µ−He++ system corresponds to 2pσ muon state of the respective
two-center Coulomb problem. At the same time, this state tends asymptotically to
the ground state of hµ atom. Therefore, the adiabatic approximation of (Heµh)++

bound states as well as (hµ)1s + He++ elastic scattering is realized here by retain-
ing only one term in expansion (8) for Nlm = 2pσ. The corresponding adiabatic
wave function receives the form

ΨJM (r, R) = YJM (Θ ,Φ)ϕ2pσ(R; ξ, η)χJ
2pσ(R)R−1, (9)

where m = 0 and index λ = +(−1)J was omitted. By substitution of expression
(9) into the Schrödinger equation with Hamiltonian (2) and after averaging over
spherical angles (Θ ,Φ) and the muon 2pσ state, one obtains the radial equation

d2

dR2
χJ

2pσ(R) + 2M

[
ε− VA(R)− J(J + 1)

2MR2

]
χJ

2pσ(R) = 0, (10)

where ε = E−E2pσ(∞) is the collision energy; E is the total energy of the system;
E2pσ(∞) is the ground state energy of hµ atom. The adiabatic potential V A(R)
reads

VA(R) = VBO(R) +
UA(R)

2M
, (11)

where

VBO(R) = E2pσ(R)− E2pσ(∞) +
2
R

(12)

is the potential corresponding to the Born–Oppenheimer approximation, and

UA(R) = 〈2pσ|2MT |2pσ〉 (13)

is the adiabatic correction, usually written in the form [16]:

UA(R) = H+(R)−H∗(R) + κ[H−(R)− 2H∗(R)]. (14)

Functions H±(R) and H∗(R) are as follows:
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H+(R) = − 3
2R2

+
1

R2
[4E2pσ(R) + RE′

2pσ(R)]
〈
φ2pσ

∣∣r2
∣∣ φ2pσ

〉

−3R2
〈
φ2pσ

∣∣r2W
∣∣ φ2pσ

〉
+

〈
φ′2pσ

∣∣φ′2pσ

∣∣〉 ,

H−(R) = − 1
R

[4E2pσ(R) + RE′
2pσ(R)] 〈φ2pσ |z|φ2pσ〉+

3
R
〈φ2pσ |zW |φ2pσ〉 ,

H∗(R) = −[E2pσ(R) + RE′
2pσ(R)]/2, (15)

where “prime” denotes derivative with respect to R,

W = −2[(Z1 + Z2)ξ + (Z2 − Z1)η]/R(ξ2 − η2) and Z1 = 1, Z2 = 2.

Molecular term E2pσ(R) and functions H±(R), H∗(R) have the following asymp-
totic (R →∞) behavior [15, 16]:

E2pσ(R) = −1
2
− Z2

R
− 9

4
Z2

2

R4
+ O(R−6), (16)

H+(R) = 0.25− 12
R4

, H−(R) = 0.5− 27
R4

, H∗(R) = 0.25− 15
R4

, (17)

where the term −(9/4)Z2
2R−4 in Eq. (16) corresponds to the quadratic Stark-effect

[34] for muonic hydrogen in the electric field of nucleus Z2. At R → 0 we have
[15, 16]:

E2pσ(0) = − (Z1 + Z2)2

8
,

H+(R) =
2

R2
, H−(0) = −3

8
, H∗(0) =

9
16

. (18)

Potentials E2pσ(R), H±(R), H∗(R) and VBO(R), V A(R) are presented in Fig. 3
and Fig. 4, respectively.

Fig. 3. Adiabatic corrections H±(R), H∗(R) and molecular term E2pσ(R) correspond-

ing to He−µ−h system.
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Fig. 4. The Born–Oppenheimer potential, VBO (dashed), corresponding to any

h−µ−He++ system and the adiabatic potential, VA (solid line), corresponding to

p−µ−3He++ system.

3. Phase-function method for one-level problem

The adiabatic wave function for (hµ)1s + He++ system is the solution of
Eq. (10) with the following boundary conditions (the label 2pσ is omitted):

χJ(0) = 0,

χJ(R →∞) = cos δJjJ (kR)− sin δJnJ(kR), (19)

where k =
√

2Mε; jJ(kR) and nJ(kR) are the Riccati–Bessel functions [35]; δJ is
the phase shift. Assuming the following ansatz for the radial function [36]:

χJ(R) = AJ(R)[cos δJ(kR)jJ(kR)− sin δJ(kR)nJ(kR)] (20)

and the constraint

d
dR

χJ(R) = AJ(R)
[
cos δJ(kR)

d
dR

jJ(kR)− sin δJ(kR)
d

dR
nJ(kR)

]
, (21)

one obtains the system of two coupled first-order differential equations for ampli-
tude AJ (R) and phase-function δJ(R) [36]:





d
dr AJ(R) = − 2M

k AJ(R)V (R) [cos δJ (R)jJ (kR)− sin δJ(R)nl(kR)]

× [sin δJ(R)jJ(kR) + cos δJ(R)nJ(kR)] ,
d
dr δJ(R) = − 2M

k V (R) [cos δJ (R)jJ (kR)− sin δJ(R)nJ (kR)]2 (23)

(22)

with boundary conditions

AJ(R →∞) = 1, (24)

δJ (0) = 0. (25)

Equations (22) and (23) are called the amplitude and phase-equation, respec-
tively, and together with conditions (24) and (25) are equivalent to the bound-
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ary value problem (10) and (19). Phase shift is obtained from the condition
δJ = δJ(R →∞). In order to calculate the total elastic cross-section,

σtot =
4π

k2

∞∑

J=0

(2J + 1) sin2 δJ , (26)

which is expressed in terms of phase shift only, it suffices to solve Eq. (23) with
condition (25).

At the same time the fact is known that bound state energies corre-
spond to imaginary poles of scattering S-matrix elements in complex k-plane for
Im(k) > 0 [37]. The corresponding equations for the partial S-matrix function,
SJ (R) = eiδJ (R), obtained from Eq. (23) and (25), receives the form [36]:

d
dr

SJ(R, k) = −2M

k
V (R)[h(−)

J (kR)+iSJ (R, k)h(+)
J (kR)]2,

SJ (0, k) = 1, (27)

where h
(+)
J (kR) = jJ(kR) ± inJ(kR). Bound-state energies, εn, can be obtained

then from the requirement SJ (∞, iκn) = ∞, where k = iκ, κ > 0, εn = − h̄2κ2
n

2M ,
n = 0, 1, etc. For numerical purposes, however, it is convenient to replace Eq. (27)
by the corresponding real equations for the real partial scattering amplitude-
-function defined as fJ(R, k) = (−i)2J+1e2iδJ (R) sin δJ (R). The equations read

d
dr

fJ(R, κ) = −2M

κ
V (R)

[
pJ(κR) +

2
π

fJ(R, κ)qJ(κR)
]2

,

fJ(0, κ) = 0, (28)

where pJ(x) = (−i)J+1jJ(ix) and qJ (x) = π
2i

J+1h
(+)
J (ix). The condition for bound

states is fJ(∞, κn) = 0. Additionally, regularization of Eqs. (28) by substitution
fJ (R, κ) = tan[γJ(R, κ)] leads to the following boundary value problem:

d
dr

γJ(R, κ) = −2M

κ
V (R)

[
pJ(κR) cos γJ(R, κ) +

2
π

qJ(κR) sin γJ(R, κ)
]2

,

γJ (0, κ) = 0 (29)

with the condition for bound states

γJ (∞, κn) = (2n + 1)
π

2
. (30)

Extension of the phase-function method to multi-level problems can be found in
Refs. [36].

4. Results and discussion

4.1. Cross-sections for elastic (hµ)1s + He++ scattering

Energy dependence of several partial phase shifts for elastic (pµ)1s+3He++

scattering calculated in the adiabatic one-level approximation is presented in
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Fig. 5. (a) Partial phase shifts for elastic (pµ)1s+
3He scattering vs. collision energy ε.

(b) Partial and total cross-sections for elastic (pµ)1s+
3He scattering.

Fig. 6. Comparison of the total cross-section (including s and p partial waves) for

elastic (pµ)1s+
3He scattering calculated in the one-level adiabatic approximation in

the present paper (solid line) with the corresponding total cross-section calculated in

Ref. [29] in the two-level approximation (dotted line).

Fig. 5a for collision energies 0 ≤ ε ≤ 50 eV. Zero-energy values of phase shifts
for J = 0 and 1, equal to π, indicate, according to the Levinson theorem [34, 37],
the existence of the corresponding one bound state of (3Heµp)++ for each J . The
respective partial and total cross-sections are presented in Fig. 5b. According to
the figure and Fig. 6, the Ramsauer–Townsend effect is observed at ε ≈ 0.28 eV,
and a broad resonance corresponding to J = 3, at ε ≈ 13 eV. The low-energy
total cross-sections including dominating s and p partial waves are compared with
the corresponding two-level results of Ref. [29] in Fig. 6. The agreement is quite
satisfactory in the whole energy range considered. At the same time, our cross-
-sections significantly differ from the corresponding results of Ref. [30] obtained
in the frame of the same method of calculation, i.e. one-level adiabatic approx-
imation. As an illustration of the discrepancy, Fig. 7 presents the comparison
of the dominating s-wave cross-sections obtained in the present paper with the
ones of Refs. [30] and [29]. Our results are close to the corresponding two-level
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Fig. 7. Comparison of s-wave cross-section for elastic (pµ)1s+
3He scattering obtained

in the one-level adiabatic approximation in the present paper (solid) and in Ref. [30]

(dashed) with the corresponding two-level s-wave cross-section of Ref. [29] (dotted line).

Fig. 8. (a) Comparison of the total cross-section for elastic (pµ)1s+
3He scattering

(partial contributions up to J = 10 are included) obtained in the present paper with

(solid) and without (dashed line) adiabatic corrections. (b) As in (a) but for elastic

(pµ)1s+
4He scattering.

cross-sections of Ref. [29] whereas they significantly differ from results of [30],
especially for low-energy limit. We also have found a significant discrepancy be-
tween our s-wave elastic cross-sections and the corresponding ones of Ref. [30] for
all remaining isotope compositions of (hµ)1s + He++ system. The source of this
discrepancy, however, is not clear to us.

Adiabatic cross-sections for (pµ)1s + 3He++ and (pµ)1s+4He++ elastic col-
lisions are compared with their B–O counterparts in Fig. 8a and b, respectively.
As is seen from the figures, adiabatic results significantly differ from B–O ones in
the whole energy range considered. At the same time, the B–O approximation
significantly shifts the Ramsauer–Townsend minima towards smaller collision en-
ergies. Total elastic cross-sections for (hµ)1s + 3He++ and (hµ)1s+4He++, where
h = p, d, t, calculated by summing partial contributions up to J = 10 are collected
in Figs. 9a and 10a, respectively. Very large zero-energy values for h = d and t
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Fig. 9. (a) Energy dependence of total cross-sections for elastic (hµ)1s+
3He scattering

for h = p (solid), h = d (dashed), and h = t (dotted line). (b) Energy dependence of

partial resonance cross-sections (σJ), the respective phase shifts (δJ) and time delays

(tJ), corresponding to (hµ)1s+
3He scattering. Curves are denoted as in part (a).

(only s-wave contribution dominates) which are visible in the insets are due to the
presence of virtual (anti-bound) or weakly-bound states [38, 39]. In order to dis-
tinguish between these two possibilities we calculated the corresponding scattering
lengths, α = − limk→0(tan δ0/k). Results are presented in Table I.

TABLE I

Scattering lengths, α (results in µ-atomic units are presented in curly brackets), and

resonance positions, εr
J , and widths, ΓJ , obtained from Eq. (31) and from fitting (in

brackets) for elastic (hµ)1s + He++ scattering. Resonance partial waves for J = 2

and J = 3 correspond to h = p and h = d, t, respectively.

3He 4He

α [10−10 cm] εr
J [eV] ΓJ [eV] α [10−10 cm] εr

J [eV] ΓJ [eV]

p −0.64{−2.3} 12.9(12.9) 6.6(7.3) −1.3{−4.4} 7.4(7.4) 2.0(2.1)

d −4.9{−18.0} 32.7(32.7) 21.7(26.5) −13.0{−48.0} 23.1(22.9) 10.1(11.6)

t −21.8{−82.1} 19.0(18.9) 7.5(8.1) 15.7{59.1} 7.9(7.9) 0.8(0.8)

One sees from Table I that the low-energy elastic (tµ)1s+4He++ cross-
-section is determined by the presence of a loosely bound state (α > 0) of the
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Fig. 10. (a) Energy dependence of total cross-sections for elastic (hµ)1s+
4He scattering

for h = p (solid), h = d (dashed), and h = t (dotted line). (b) Energy dependence of

partial resonance cross-sections (σJ), the respective phase shifts (δJ) and time delays

(tJ), corresponding to (hµ)1s+
4He scattering. Curves are denoted as in part (a).

corresponding muonic molecule, (4Heµt)++ (see Sec. 4.2). At the same time,
low-energy elastic cross-sections for the remaining hydrogen and helium isotope
compositions of (hµ)1s + He++ system (excluding h = p) are determined by the
presence of virtual states (α < 0). For ε À 0, total cross-sections exhibit distinct
maxima which are due to single partial-wave resonances (shape resonances [40])
corresponding to J = 2 for h = p and to J = 3 for h = d, t. The corresponding
partial cross-sections, phase shifts, and time delays (tJ = 2dδJ/dE) are presented
in Figs. 9b and 10b. One sees from the figures that each resonance phase shift
increases by about π from a background level βJ . Approximate positions of the
resonances, εr

J , correspond to maxima of tJ . Widths of the resonances can be
calculated from the equation

ΓJ = 2
√
−2δ′J/δ′′′j

∣∣
ε=εr

J
, (31)

(see Ref. [41]), where “prime” denotes the derivative with respect to ε. Results
are also collected in Table I. As is seen from Figs. 9b, 10b, and Table I, the re-
lation between the time delay and the resonance width, tJ(εr

J) = 4/ΓJ, is almost
fulfilled for each isotope composition of (hµ)1s + He++ system. At the same time,
approximate resonance positions and widths calculated from fitting of the formula
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δJ (ε) = arctan
(

ε− εr
J

ΓJ/2

)
+ βJ (32)

to the corresponding phase shifts are presented in Table I in parenthesis. The
differences are due to energy dependence of βJ neglected in Eqs. (31) and (32).

4.2. Bound states of (Heµh)++ molecules

R-dependence of phase shift for J = 0 corresponding to elastic (tµ)1s+4He++

scattering for three collision energies is presented in Fig. 11 as an example. Char-
acteristic jumps of δ0(R) by π, at R1 ≈ 3.8 and R2 ≈ 15, appearing when ε → 0,
correspond to two bound states. An abscissa of a jump equals to a minimal poten-
tial range at which the respective bound state is supported. Bound state energies
were calculated by numerical solution of Eqs. (29) and (30). Function γ0(Rmax, ε),
corresponding to elastic (tµ)1s+4He++ scattering, obtained for Rmax, is plotted
in Fig. 12. Coordinates ε1 and ε2, for which γ0(Rmax, ε) experiences successive

Fig. 11. R-dependence of phase shift, δ0, for elastic (tµ)1s+
4He scattering for different

collision energies: ε = 10−2 eV (dotted), ε = 10−4 eV (dashed), and ε = 10−10 eV (solid

line).

Fig. 12. Energy-dependence of function γ0(Rmax, ε), defined in Sec. 3, for elastic

(tµ)1s+
4He scattering.
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jumps by π, are equal to binding energies of the corresponding muonic molecule
for J = 0. It is remarkable that the curves from Figs. 11 and 12 are consistent,
i.e. they both indicate the presence of two bound states. Binding energies of
(hµHe)++ molecules for all isotope combinations, with and without inclusion of
adiabatic corrections are presented in Table II.

TABLE II

Energy levels of (Heµh)++ molecules calculated in the one-level

adiabatic (Ad.) and the Born–Oppenheimer (B–O) approximation

obtained in the present paper. Results obtained from two- and

many-channel calculation in Refs. [27] and [26], respectively, are

also presented for comparison.

−εJv
3Heµp 4Heµp 3Heµd 4Heµd 3Heµt 4Heµt

−ε00 Ad. 67.2 73.85 69.5 77.5 71.6 80.5

B–O 39.7 42.3 59.3 63.5 68.7 73.8

[27] 72.76 80.64 69.37 77.49

[26] 70.976 79.340 72.296 81.335

−ε01 Ad. 0.076

B–O 0.053

[26] 0.134

−ε10 Ad. 34.2 41.6 46.5 55.9 52.4 62.9

B–O 13.8 17.1 37.9 43.6 49.9 56.9

[27] 38.82 46.31 46.41 55.74

[26] 48.419 58.222 53.330 63.958

−ε20 Ad. 7.25 17.7 18.2 30.7

B–O 2.4 9.4 16.8 26.2

[27] 7.11 17.49

[26] 9.434 20.416 19.379 32.063

Our adiabatic results presented in Table II coincide almost exactly‡ with the
ones of Ref. [12] obtained by direct numerical solution of the Schrödinger equation
(10) with boundary conditions (19). Many-channel variational results obtained in
Refs. [26] and [27] are also presented for comparison. It is remarkable that numbers
of bound states obtained in the frame of the adiabatic and B–O approximations
are the same for each J . However, adiabatic binding energies are shifted below
the corresponding B–O ones. The influence of adiabatic corrections is minimal for
the J = 0 ground-state energy, ε00, of (4Heµt)++ molecule, whereas it is maximal
for the J = 2 ground-state energy, ε20, of (3Heµd)++.

‡Binding energy, ε01, of the loosely bound state of (4Heµt)++ molecule is not presented in

Ref. [12].
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Fig. 13. Comparison of nuclear wave function χ20(R) (top) for (3Heµd)++ molecule

and χ00(R) (bottom) for (3Heµt)++ molecule, calculated with inclusion of adiabatic

corrections (solid) with their Born–Oppenheimer counterparts (dashed line).

TABLE III

Energy levels of (Heπh)++ molecules calculated in the one-level adi-

abatic (Ad.) and the Born–Oppenheimer (B–O) approximation ob-

tained in the present paper.

−εJv
3Heπp 4Heπp 3Heπd 4Heπd 3Heπt 4Heπt

−ε00 Ad. 79.29 89.32 78.27 90.30 79.61 92.82

B–O 38.22 41.44 62.87 68.53 75.37 82.51

−ε10 Ad. 27.89 38.30 41.86 55.42 48.96 64.21

B–O 2.74 6.19 30.10 37.73 45.74 55.46

−ε20 Ad. 14.59

B–O 9.27

Figures 13 present a comparison of the corresponding nuclear wave functions
calculated with and without inclusion of adiabatic corrections.

It is interesting to examine also the influence of adiabatic corrections on
bound-state energies of hydrogen–helium molecules, in which the muon is replaced
by negative pion, π−. The corresponding binding energies calculated with and
without inclusion of adiabatic corrections are presented in Table III (according to
our best knowledge, these results are presented for the first time). Due to less
M/ma mass ratios the influence of the corrections on energy levels is much more
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Fig. 14. Bound state energies (top) corresponding to J = 0 of fictitious (3Hexp)++

molecule calculated in the one-level adiabatic approximation vs. the mass of a fictitious

negative particle x. Mass-dependence of the corresponding relative difference between

adiabatic and B–O energy levels, η = (εA
0v − εBO

0v )/εBO
0v , is also presented (bottom).

pronounced for pionic systems than for muonic ones. The same is true for nuclear
wave functions, as expected.

Figure 14 presents energy levels (top) corresponding to J = 0 of a fictitious
molecule (3Hexp)++ calculated in the adiabatic one-level approximation vs. mass
mx of a fictitious negative particle x. Mass mx changes from electron mass to
anti-proton mass. The corresponding relative difference between the adiabatic
and B–O energy levels (bottom), η = (εA

0v − εBO
0v )/εBO

0v , increases with increasing
mx. For a given mx, η sharply increases with increasing vibrational quantum
number v. Points of intersections between vertical lines, corresponding to muon
mass and pion mass, and lines of the diagram correspond to binding energies of
the respective muonic and pionic molecules for J = 0 presented in Tables II and
III, and to the relative energy differences.

5. Conclusions

In this paper we present total and partial cross-sections for elastic (hµ)1s +
He++ scattering calculated in the one-level adiabatic and Born–Oppenheimer ap-
proximations for the 2pσ molecular state. Our adiabatic cross-sections significantly
differ from the corresponding results of Ref. [30], obtained using the same method
of calculation, and are close to the ones of Ref. [29] (the two-level calculation).
At the same time, the existing discrepancy between results of Ref. [29] and [30]
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is resolved in favor of the first paper. We also calculated scattering lengths, and
positions and widths of resonances appearing in elastic (hµ)1s + He++ scattering
for collision energy range 0 ≤ ε ≤ 50 eV. It was shown that adiabatic corrections to
the Born–Oppenheimer scattering potential are responsible for proper positions of
the Ramsauer–Townsend minima in slow (pµ)1s+3,4He++ collisions. The influence
of the corrections on energy levels of muonic, (Heµh)++, and pionic, (Heπh)++,
molecules is also presented. As is seen from Tables II, III and Fig. 14, the in-
fluence of adiabatic corrections decreases with increasing mass ratio, M/ma, and
decreasing coefficient κ. This observation corresponds with the form of potential
V A(R) expressed by Eqs. (11)–(14).
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and S. Taczanowski for the kind hospitality during his stay in Kraków at the
Faculty of Physics and Applied Computer Science, UST.

References

[1] F.C. Frank, Nature 160, 525 (1947); A.D. Sakharov, Lebedev Physics Institute

Report, 1948, unpublished; Muon Catal. Fusion 4, 235 (1989); L.W. Alvarez,

H. Bradner, F.S. Crawford Jr., J.A. Crawford, P. Falk-Vairant, M.L. Good,

J.D. Gow, A.H. Rosenfeld, F. Solmitz, M.L. Stevenson, H.K. Ticho, R.D. Tripp,

Phys. Rev. 105, 1127 (1957); E.A. Vesman, Pis’ma Zh. Eksp. Teor. Fiz. 5,

113 (1967) [Sov. Phys. JETP Lett. 5, 91 (1967)]; W.H. Breunlich, P. Kammel,

J.S. Cohen, M. Leon, Ann. Rev. Nucl. Part. Sci. 39, 311 (1989); C. Petitjean,

Nucl. Phys. A 543, 79c (1992); J.S. Cohen, RIKEN Review 20, 8 (1999).

[2] L. Bracci, G. Fiorentini, Phys. Rep. 86, 169 (1982); A. GuÃla, Acta Phys. Pol. B

16, 589 (1985); P. Froelich, Adv. Phys. 41, 405 (1992).

[3] V.B. Belyaev, V.I. Korobov, S.A. Rakityansky, Few-Body Systems 17, 243 (1994).

[4] A. Bertin, A. Vitale, in: Fifty Years of Weak-Interaction Physics, Eds. A. Bertin,

R.A. Ricci, A. Vitale, Italian Physical Society, Bologna 1984, p. 130; V.M. Bystrit-

sky, V.F. Boreiko, M. Filipowicz, V.V. Gerasimov, O. Huot, P.E. Knowles,

F. Mulhauser, V.N. Pavlov, L.A. Schaller, H. Schneuwly, V.G. Sandukovsky,
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V. Bystritsky, W. Czaplinski, J. Woźniak, E. GuÃla, A. Kravtsov, A. Mikhailov,

N. Popov, Phys. Rev. A 53, 4169 (1996).

[10] M. Leon, H.A. Bethe, Phys. Rev. 127, 636 (1962); A.P. Bukhvostov, N.P. Popov,

Zh. Eksp. Teor. Fiz. 82, 23 (1982) [Sov. Phys. JETP 55, 13 (1982)];

L.I. Menshikov, Muon Catal. Fusion 2, 173 (1988); V. Bystritsky, W. Czaplinski,

N. Popov, Eur. Phys. J. D 5, 185 (1999).

[11] L. Bracci, G. Fiorentini, Nuovo Cimento A 43, 9 (1978); W. Czaplinski, A. Gula,

A. Kravtsov, A. Mikhailov, N. Popov, Phys. Rev. A 50, 525 (1994); L.I. Pono-

marev, E.A. Solov’ev, Pis’ma Zh. Eksp. Teor. Fiz. 64, 129 (1996) [JETP Lett.

64, 135 (1996)]; A.V. Kravtsov, A.I. Mikhailov, Zh. Eksp. Teor. Fiz. 107,

1473 (1995) [Sov. Phys. JETP 80, 822 (1995)]; A.V. Kravtsov, A.I. Mikhailov,

Phys. Rev. A 58, 4426 (1998); A.V. Kravtsov, A.I. Mikhailov, L.I. Ponomarev,

E.A. Solovyov, Hyperfine Interact. 138, 103 (2002).

[12] Yu.A. Aristov, A.V. Kravtsov, N.P. Popov, G.E. Solyakin, N.F. Truskova,

M.P. Faifman, Yad. Fiz. 33, 1066 (1981) [Sov. J. Nucl. Phys. 33, 564 (1981)].

[13] W. Czaplinski, A. Kravtsov, A. Mikhailov, N. Popov, Phys. Lett. A 219, 86

(1996); W. Czaplinski, A. Kravtsov, A. Mikhailov, N. Popov, Eur. Phys. J. D 3,

223 (1998).

[14] F.M. Pen’kov, Yad. Fiz. 60, 1003 (1997) [Phys. At. Nucl. 60, 897 (1997)];

L.N. Bogdanova, V.I. Korobov, L.I. Ponomarev, Hyperfine Interact. 118, 183

(1999).

[15] I.V. Komarov, L.I. Ponomarev, S.Yu. Slovianov, Spheroidal and Coulomb

Spheroidal Functions, Nauka, Moscow 1976, p. 318.

[16] S.I. Vinitsky, L.I. Ponomarev, Fiz. Elem. Chastits At. Yadra 13, 1336 (1982)

[Sov. J. Part. Nucl. 13, 557 (1982)].

[17] J.H. Macek, J. Phys. B 1, 831 (1968); M. Fabre de la Ripelle, M.I. Haf-

tel, S.Y. Larsen, Phys. Rev. A 44, 7084 (1991); V.V. Gusev, V.I. Puzynin,

V.V. Kostrykin, A.A. Kvitsinsky, S.P. Merkuriev, L.I. Ponomarev, Few-Body Sys-

tems 9, 137 (1990); M. Decker, W. Sandhas, V.B. Belyaev, Phys. Rev. A 53, 726

(1996).

[18] K.K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer-

-Verlag, Berlin 1991, p. 283; D.M. Caperley, B.J. Alder, Phys. Rev. A 31, 1999

(1985); S.P. Merkuriev, S.A. Niemnugin, Few-Body Systems 14, 191 (1993).



Elastic (hµ)1s + He++ Scattering . . . 815

[19] L.D. Faddeev, Mathematical Aspects of the Three-Body Problem in Quan-

tum Scattering Theory, Steklov Math. Inst., Leningrad 1963 [Engl. transl.

D. Davey and Co., New York 1965]; A.A. Kvitsinsky, Chi-Yu Hu, J.S. Cohen,

Phys. Rev. A 53, 255 (1996); Chi-Yu Hu, A.A. Kvitsinsky, Phys. Rev. A 46,

7301 (1992); Chi-Yu Hu, A.A. Kvitsinsky, S.P. Merkuriev, Phys. Rev. A 45, 2723

(1992).

[20] Y. Kino, M. Kamimura, Hyperfine Interact. 82, 195 (1993).

[21] O.I. Kartavtsev, V.I. Kochin, E.A. Kolganova, Hyperfine Interact. 118, 235

(1999).

[22] V.I. Korobov, Hyperfine Interact. 101/102, 329 (1996).

[23] E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).

[24] V.M. Bystritsky, V.P. Dzhelepov, V.I. Petrukin, A.I. Rudenko, V.M. Suvorov,

V.V. Filtchenkov, N.N. Hovansky, B.A. Homenko, Zh. Eksp. Teor. Fiz. 84,

1257 (1983) [Sov. Phys. JETP 57, 728 (1983)]; D.V. Balin, A.A. Vorobyov,

An.A. Vorobyov, Yu.K. Zalite, A.A. Markov, V.I. Medvedev, E.M. Maev, G.G. Se-

menchuk, Yu.V. Smirenin, Pis’ma Zh. Eksp. Teor. Fiz. 42, 236 (1985) [JETP

Lett. 42, 293 (1985)]; T. Matsuzaki, K. Ishida, K. Nagamine, Muon Catal. Fu-

sion 2, 217 (1988); V.M. Bystritsky, A.V. Kravtsov, J. Rak, Kerntechnik 58, 185

(1993); S. Tresh, R. Jacot-Guillarmod, F. Mulhauser, C. Piller, L.A. Schaller,

L. Schellenberg, H. Schneuwly, Y.-A. Thalmann, A. Werthmüller, Phys. Rev.

A 57, 2496 (1998); B. Gartner, P. Ackerbauer, W.H. Breunlich, M. Cargnelli,

P. Kammel, R. King, B. Lauss, J. Marton, W. Prymas, J. Zmeskal, C. Pe-

titjean, M. Augsburger, D. Chatellard, J.-P. Egger, T. von Egidy, F.J. Hart-
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