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We discuss the d-wave superconductivity in confined geometry by im-

posing open boundary conditions on the attractive Hubbard model. Within

the Bogoliubov–de Gennes approach we evaluate the order parameter and

charge density distribution in the system.
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1. Introduction

Constant progress in designing superconducting nanoscale devices, like built
on superconducting junctions quantum bits [1], stimulates studies of superconduc-
tivity in confined geometries. The interest in this issue is also spurred by related
problems of superconductivity at the edge of a bulk sample or surface supercon-
ductivity possibly relevant in tunneling experiments in cuprates [2]. Physics of
superconductivity in confined geometry has been discussed for the s-wave system
approximated by a square lattice with open boundary conditions [3, 4]. Here we
consider the development of the d-wave superconductivity on such a model lattice.

2. Hamiltonian and boundary conditions

We define the system by the attractive Hubbard Hamiltonian which supports
the d-wave superconductivity [5–7]:
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where c†iσ (ciσ) is the fermionic creation (annihilation) operator with spin σ on a
site ri of a square lattice, t is the nearest-neighbor hopping, U0 > 0 is the on-site
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repulsion potential, U1 < 0 is the pairing interaction, niσ = c†iσciσ, and µ is the
chemical potential. Symbol 〈ij〉 means the nearest-neighbor summation.

We proceed by performing the mean-field approximation [5–7] which leads
to an effective quadratic Hamiltonian
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where t̃ii+δ = t + U1
4

∑
σ〈c†i+δσciσ〉, µ̃i↑(↓) = µ − U0〈ni↓(↑)〉 − U1

2

∑
δσ〈ni+δσ〉,

∆(ri) = U0〈ci↓ci↑〉, ∆(rii+δ) = U1〈ci+δ↓ci↑〉, and the summation index δ embraces
the i-site nearest-neighbors. The effective Hamiltonian is diagonalized by the
Bogoliubov–de Gennes (BdG) transformation [8] and solved on lattices of sizes up
to 32× 32 with open boundary conditions (OBC) imposed.

We define the open boundary conditions by the constraints t̃ij = 0 and
∆(rij) = 0 for i or j beyond the square lattice, i.e., we bind the order parameter
and the hopping integral to vanish at the edge of the system.

Before proceeding, we comment on the choice of used parameters. We have
studied the system for a range of parameters 0.5 ≤ |U1/t| ≤ 1.0 (weak pairing)
and 1.0 < |U1/t| ≤ 3.0 (strong pairing) taking U0 = −U1. The average charge
density has been set near and at half-filling to picture the high-temperature su-
perconductors. For such a filling we also expect the effect of the Hartree potential
to be the least significant, which is important as our model Hamiltonian does not
comprehend the spin dynamics and cannot properly take the Hartree shifts into
account. In the following the Hartree corrections are neglected in our numerical
calculations.

3. Order parameter and particle density

Breaking of the tetragonal symmetry by OBC can be perceived as a for-
mation of the s-wave component of the d-wave order parameter, a compo-
nent which is invariant under a whole group of tetragonal transformations.
Given the order parameter around the ri site (δ = x, y,−x,−y) of the lat-
tice ∆δ(ri) = [∆(rii+δ) + ∆(ri+δi)]/2, we identify the s-wave component as
∆s(ri) = [∆x(ri) + ∆−x(ri) + ∆y(ri) + ∆−y(ri)]/4, whereas the proper d-wave
component is defined as ∆d(ri) = [∆x(ri)+∆−x(ri)−∆y(ri)−∆−y(ri)]/4. These
two counterparts of the order parameter are evaluated for a 22× 22 square lattice
with OBC by solving the BdG equations [8]. We show the d-wave component
∆d(ri) and compare it to the solution of the system with periodic boundary con-
ditions (PBC) at half-filling (n = 1.0) for the weak-pairing in Figs. 1a,b, and for
the strong-pairing in Figs. 1c,d. The corresponding s-wave solutions are shown
in Fig. 2. Let us note the wide-spread oscillations of the order parameter for the
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weak-pairing superconductivity. The charge density distribution for the average
particle density n = 0.9 is presented in Fig. 3, for the half-filling case the particle
density function is constant n(ri) = 1.

Fig. 1. The d-wave component ∆d(ri) of the order parameter on a square lattice

22 × 22 with OBC (solid lines) and PBC (dashed lines) for the average charge

density n = 1.0, the on-site repulsion potential U0, the d-wave pairing potential U1:

(a) U0 = −U1 = 0.5t, (b) U0 = −U1 = 1.0t, (c) U0 = −U1 = 1.5t, (d) U0 = −U1 = 2.0t.

Fig. 2. The s-wave component ∆s(ri) of the order parameter for OBC (solid lines)

and PBC (dashed lines) on the lattice as in Fig. 1.



724 P. Pisarski, G. Harań

Fig. 3. The charge density n(ri) distribution in the d-wave superconducting system on

a square lattice 22× 22 with OBC (solid lines) and PBC (dashed lines) for the average

charge density n = 0.9 and the potential parameters as in Fig. 1.

4. Conclusions

We showed that the open boundary conditions, similarly to the impurity [7],
break the rotational and translational invariance of the system leading to a for-
mation of the s-wave component of the d-wave order parameter. Our calculations
report a significant variation of ∆d(ri) and ∆s(ri) order parameters, and the par-
ticle density function n(ri) near the edge of a sample. Although developed locally
on the edge of the lattice, these Friedel-like oscillations extend towards the center
of the sample for weak pairing.
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