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The Penson–Kolb–Hubbard model, i.e. the Hubbard model with the

pair-hopping interaction J is studied. We focus on the properties of

the superconducting state with the Cooper-pair center-of-mass momentum

q = Q (η-phase). The transition into the η-phase, which is favorized by the

repulsive J (J < 0) is found to occur only above some critical value |Jc|,
dependent on band filling, on-site interaction U and band structure, and

the system never exhibits standard BCS-like features. This is in obvious

contrast with the properties of the isotropic s-wave state, stabilized by the

attractive J and attractive U , which exhibit at T = 0 a smooth crossover

from the BCS-like limit to that of tightly bound pairs with increasing pairing

strength.

PACS numbers: 74.20.–z, 71.28.+d, 74.25.Ha

1. Introduction

The Penson–Kolb–Hubbard (PKH) model is one of the conceptually simplest
effective models for studying superconductivity of the narrow band systems with
short-range, almost unretarded pairing [1–5]. Its Hamiltonian has the form

H = −t
∑

〈ij〉σ

(
c+
iσcjσ + h.c.

)
+ U

∑

i

ni↑ni↓ − 1
2
J

∑

〈ij〉

(
c+
i↑c

+
i↓cj↓cj↑ + h.c.

)
,

where niσ = c+
iσciσ, t is the single electron hopping integral, U is the on-site

density interaction, J is the pair hopping (intersite charge exchange) interaction.
〈ij〉 restricts the sum to nearest neighbors (nn) and n = 1

N

∑
iσ〈niσ〉.

(709)
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The model includes a nonlocal pairing mechanism (the pair hopping term J)
that is distinct from the on-site interaction in the attractive Hubbard (AH) model
and that is the driving force of pair formation and also of their condensation.

The PKH model has been investigated only in a few particular limits till now
[1–7]. The main efforts concerned the ground state properties of the model in one
dimension (d = 1) at half-filling (n = 1) [1, 2, 4]. For d-dimensional hypercubic
lattices the ground state diagrams of the half-filled PKH model have been deter-
mined by means of the (broken symmetry) Hartree–Fock approximation (HFA)
and by the slave-boson mean field method in Ref. [2]. For d = 1 the diagrams are
shown to consist of at least nine different phases including superconducting states,
site and bond-located antiferromagnetic and charge-density-waves states, as well
as mixed phases with coexisting site and bond orderings. The stability range of the
bond-type orderings shrinks with increasing lattice dimensionality and for d = ∞
the phase diagram involves exclusively site-located orderings.

Recently, we have studied superconducting characteristics of the PK model
[6] and the PKH model [5] in the case of attractive J (J > 0), which stabilizes
s-wave pairing state (S) analogous to that driven by the on-site attraction in the
AH model.

In the following we will conclude the properties of the PKH model in the
case of repulsive J (J < 0). Such an interaction can stabilize the η-phase,
i.e. the superconducting state with the Cooper-pair center of mass momentum
q = Q (Q = Π /a,Π /a, . . .), with the order parameter xη =

∑
i exp (iQ ·Ri) ×

〈c+
i↑c

+
i↓〉 6= 0 [2−4, 7].

2. Results and discussion

We performed an extended analysis of the thermodynamic and electromag-
netic properties of the η-phase of the model for d-dimensional hypercubic lattices
and arbitrary electron concentration (0 < n < 2) [8]. In the analysis we used a
linear response theory and the electromagnetic kernel was evaluated within the
HFA-RPA scheme. The effects of phase fluctuations on Tc for d = 2 lattices were
estimated within the Kosterlitz–Thouless (K–T) scenario in the same way as it
was done previously for the case of S-phase [5, 6]. Moreover, the properties of the
zero-bandwidth limit of the model were determined using the variational approach
which treats the on-site interaction term exactly.

Below we only quote the main results of this study.
1. The transition into the η-phase is found to occur only above some critical

value (|J |/B)c (J < 0 and B is the band width), and the system never exhibits
standard BCS-like features. The critical value Jc depends on the form of the
density of states (DOS), the value of U and the band filling n (Figs. 1, 2).

2. At any fixed n and U there exists also a second characteristic value
of |J |/B, which we call (|J |/B)c1 and (|J |/B)c1 ≥ (|J |/B)c. For all the DOS
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Fig. 1. Ground state phase boundaries between the η-phase and the NO (normal) state

calculated within (broken symmetry) HFA for d = 2: SQ (square) d = 3: SC (simple

cubic) lattices and for rectangular DOS: Rect. V = J0 + U, B = 2zt, J0 = zJ. z is the

number of n.n. (strong-η and weak-η regions are defined in the text).

Fig. 2. Finite temperature phase diagram of the PKH model with J < 0 in the zero-

-band width limit (t = 0) calculated within the variational approach which treats the

U -term exactly and J-term within HFA. The second- and first-order transitions are

indicated, respectively, by the solid and the dashed curves. Tricritical points are shown

as a dotted line.

considered and U = 0 (|J |/B)c1 = 1/z at any n. For |J/B| > (|J |/B)c1 the
ground state of the system is characterized by a nonzero gap between the lower
and higher quasiparticle band, i.e. Em

g (T = 0) ≡ min E+
k −max E−

k > 0 and by
the order parameter which takes its maximum value (the same as in the zero band
width limit) xmax

η = 1
2

√
n(2− n). We define this state as the strong η-pairing

phase (in analogy with strong ferromagnet). For |J |/B > (|J |/B)c1, Tc > 0 for
any n (0 < n < 2). On the contrary, for (|J |/B)c < |J |/B < (|J |/B)c1: Emin

g ≤ 0
and xη < xmax

η at T = 0. Consequently, we define this state as the weak η-pairing

phase (in analogy with weak ferromagnet). This phase exists only in a restricted
range of n, which shrinks to zero with decreasing |J | (Fig. 1).
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3. For Em
g (T ) < 0 the quasiparticle DOS in the η-phase is finite for arbitrary

energy but a local minimum in the DOS can occur at the Fermi surface and the
system will exhibit a pseudogap behavior [9].

4. The electromagnetic and thermodynamic properties of the η-phase (for
J < 0) become similar to those of the S-phase (for J > 0) only in the large |J |
limit: B/|V | ¿ 1, |U | ¿ |J0| (compare Figs. 3a, b with Fig. 4 of Ref. [5]). In this
limit H2

c , 1/λ2(0), and Tc become proportional to |J |, the coherence length ξGL

tends to a constant value a/
√

2z, while the Ginzburg ratio κ = λ/ξGL ∼ 1/
√
|J |

and the energy gap Emin
g ⇒ |J0|, for any n. With decreasing |J0|/B, ξGL increases

and becomes n-dependent, going to infinity at (|J |/B)c i.e. at the border with NO
state.

Fig. 3. (a) Inverse square penetration depth 1/λ2 (λ0 = h̄c
e

√
ad−2/4πB) and the

Ginzburg–Landau (G–L) coherence length ξGL/ξ0 (ξ0 = a/
√

2z) and (b) the Ginzburg

ratio κ/κ0 (κ0 = h̄c
e

√
2/πBa4−d) and H2

c /H2
0 (H2

0 = 4πB/ad) at T = 0 plotted as a

function of −J0/B for SQ lattice and n = 1, U = 0.

Fig. 4. Transition temperatures for η-pairing calculated within HFA (Tp) and within

K–T approach (Tc), plotted as a function of |n− 1| for SQ lattice: (a) −J0/B = 1.5 and

U/B = 0, (b) −J0/B = 1.5 and U/B = 0.5 (T0 = B/kB).
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5. There are strong effects of phase fluctuations on the η-phase in d = 2.
As we see from Fig. 4 the K–T transition temperature Tc can be substantially
lower than Tp, which in d = 2 gives only the estimation of the pair formation
temperature.

6. Attractive U (U < 0) expands the range of stability of η-phase at T = 0
towards lower values of |J |. Moreover, the η-phase can survive also for repulsive
values of U (0 < U < Uc). In the narrow band regime (tij → 0) one finds that
the increasing repulsive U changes first the nature of the η-pairing transition from
a continuous to a discontinuous type, resulting in the tricritical point, then it
suppresses superconductivity for low |n− 1| and finally, for U/|J0| > 1 the system
remains in a normal state at any T and n (cf. Fig. 2).
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