
Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 5

Proceedings of the School Superconductivity and Other Phenomena in Perovskites, Warsaw 2004

CPA Theory of Superconducting Alloys

with Diagonal and Off-Diagonal Disorder

M. Michalik and K.I. Wysokiński
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The general theory of disorder in superconducting alloys was discussed.

We use standard Wannier function representation and allow for diagonal and

off-diagonal disorder. We generalized the coherent potential approximation

in the version able to deal with off-diagonal disorder in normal systems to

treat superconducting state. As an illustration we calculate the quasiparticle

density of states and gap function of a d-wave superconductor. We show

inter alia that the rate at which superconductivity disappears depends on

the kind of disorder and for off-diagonal disorder it depends on the details

of its realization.

PACS numbers: 71.10.–w, 71.23.–k, 74.20.–z

1. Introduction

Discovery of high temperature and other classes of exotic superconductors
[1] has stimulated the research of correlated and disordered systems. The reac-
tion of superconductors against the impurities intentionally introduced into them
is often the first indication of the non s-wave symmetry of the order parameter.
Most of the previous work on disordered superconductors has concentrated on the
studies of diluted impure systems [2–4], with few notable exceptions [5–7], where
concentrated alloys have been studied with help of coherent potential approxi-
mation (CPA). In this later case only diagonal disorder has been treated. Here
we apply the CPA in the version suitable to deal with off-diagonal disorder [8]
to superconducting systems [9] and calculate some characteristics of the system
including the gap function and the density of quasiparticle states.

We shall use the mentioned approach and study the dependence of prop-
erties of superconducting alloys on a kind and degree of disorder. Motivated by
experiments [10] measuring the tunneling conductance of Bi2Sr2CaCuO8+δ we
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calculate the density of states and observe that off-diagonal disorder may intro-
duce the asymmetry of the tunneling conductance notoriously observed in high-
-temperature superconductors. Let us note that the measurements of tunneling
spectra allow determination of the density of states N(E) and the dependence of
the superconducting gap on temperature, magnetic field etc.

In the second section we briefly sketch CPA technique for off-diagonal disor-
der [8] and shortly describe our method of generalizing this technique for supercon-
ducting alloys. The numerical results for the density of states and the dependence
of the superconducting gap on disorder will be presented in Sec. 3. We end up
with discussion and conclusions.

2. The model and approach

To describe disordered systems we will use the Hubbard model formulated
in the Wannier function representation

H =
∑

ijσ

t̂ijc
+
iσcjσ +

∑

iσ

(εi − µ)c+
iσciσ +

∑

i

Uic
+
i↑ci↑c+

i↓ci↓ +
∑

i,j

Vi,jninj , (1)

in which site energies εi are random quantities taking on values εA or εB depending
on whether site i is occupied by an atom of A or B type. In (1) c+

iσ (cjσ) is the
creation (annihilation) operator of spin σ electron at site i, ni =

∑
σ c+

iσciσ, µ is
the chemical potential and Ui is the on-site electron–electron repulsion, while Vij is
effective attraction leading to superconducting instability in the system. t̂ij denote
random hopping integrals taking on three values t̂AA

ij = αtij , t̂AB
ij = t̂BA

ij = χtij
and t̂BB

ij = βtij according to the type of atoms (A or B) occupying sites i and j

respectively. tij is the periodic hopping integral taking on nonzero value −t for
sites i, j being nearest neighbors.

To calculate characteristics typical of a macroscopic system one is forced
to perform averaging over disorder. For this purpose we shall use CPA in the
version proposed by Blackman, Esterling, and Berk (BEB) [8] and apply it to
superconductor. In the present paper we shall limit our discussion to AxB1−x

alloys with x = 0.5, being d-wave symmetry superconductors and systems without
the Coulomb correlations (U = 0). The energy unit is t and the chemical potential
µ is assumed to lie in the middle of the clean system energy band.

Our starting point are the Bogoliubov–de Gennes [7] equations for the matrix
Green Gij(ω) function in Nambu–Gorkov representation

∑

j

(
(E − εi + µ)δij − tij −∆ij

−∆ij (E + εi − µ)δij + tij

) (
G11

jl (E) G12
jl (E)

G21
jl (E) G22

jl (E)

)
= δil,

where ∆ij = Vij〈c+
i↑c

+
j↓〉. Denoting

Wil =
(

til ∆il

∆il −til

)
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and

g−1
i (E) =

(
E − εi 0

0 E + εi

)
,

we rewrite the equation of motion as
(

G11(E) G12(E)
G21(E) G22(E)

)

ij

=
( 1

E−εi
0

0 1
E+εi

)
δij +

( 1
E−εi

0
0 1

E+εi

)

×
∑

l 6=i

(
W11 W12

W21 W22

)

il

(
G11(E) G12(E)
G21(E) G22(E)

)

lj

or in the compact notation

Gij(E) = gi(E)δij + gi(E)
∑

i6=l

WilGlj(E). (2)

Now the idea is to project out the disorder by using operators xi (yi)
taking on value 1 if site i is occupied by an A(B)-type atom and 0 other-
wise. The operators (projectors) have the following properties: xi + yi = 1,
xiyi = yixi = 0, xixi = xi, yiyi = yi. To perform the projection one multi-
plies Eq. (2) from the left and right by all possible combinations of projectors and
makes use of their properties. In the normal state this leads to four equations [8],
which can be easily solved numerically. For superconducting alloy one gets in total
sixteen equations. The first of them appropriate for two atoms both of type A at
sites i, j and for matrix element G11

ij reads

xiG
11
ij xj =

xi

E − εA
δij +

xi

E − εA

∑

k 6=i

[W 11
ik (xk + yk)G11

kj

+W 12
ik (xk + yk)G21

kj ]xj .

Now both hopping integrals and pairing potentials take on the fixed (for a
given pair of atoms at sites i, j) and non-random value. To see this let
us write them explicitly: t̂ki = (xkαxi + ykβyi + xkχyi + ykχxi) tki, ∆ki =
(xkδAAxi + ykδBByi + xkδAByi + ykδBAxi)∆0

ki. ∆0
ki denotes the pairing potential

of arbitrary symmetry for clean system, while δAA, δBB, δAB, δBA are corrections
to ∆ki.

We have started with a 2 by 2 equation for the matrix Green function and
after averaging end up with a 4 by 4 matrix equation for the averaged matrix
elements. They are supplemented by 4 conditions for δAA∆0

ki etc., which are
calculated from the corresponding matrix element of the Green function.

From the single impurity calculations we know that there are no self-energy
corrections to the d-wave order parameter induced by isotropic impurity scattering
[2]. One can thus safely assume [7] that this is also the case in the present situation
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and write down equation for the order parameter as [11]:
∑

k

(GBEB
k ∆k

∆k (GBEB
k )∗

) (G11 G12

G21 G22

)
=

(
1 0
0 1

)
. (3)

This means that it is the normal state of an alloy which is subject of change by
disorder. In the Abrikosov–Gorkov approach to d-wave impure superconductor [2]
this corresponds to modifications of the frequency only. We calculate functions
GBEB

k from CPA equations in the BEB formulation for the normal state, and then
G11 from Eq. (3). It reads

G11 =
∑

k

(GBEB
k )−1

|GBEB
k |−2 + ∆2

k

. (4)

Quasiparticle density of states at energy E is given by the imaginary part of
G11(E):

D(E) = − 1
π

ImG11(E). (5)

This quantity is directly proportional to the tunnel conductance dI/dV and gives
information on the superconducting gap [10].

3. Results

We have solved the CPA equations for the normal state Green function GBEB
k

and calculated the order parameter and the density of quasiparticle states which, as
already mentioned, can be directly measured via tunneling experiments. Disorder
dependence of the density of states is shown in Fig. 1a,b. Figure 1a shows the
changes of the density of states with diagonal disorder only. In this case disorder
is measured by δ = εA − εB in units of t. One can see that the main effect is

Fig. 1. Density of states of an AxB1−x alloy with varying diagonal disorder δ, and no

off-diagonal disorder α = β = χ = 1 (a) and with off-diagonal disorder only correspond-

ing to χ = β = 1, and α = 1.2, 2.2, 2.9, δ = 0 (b).
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Fig. 2. Changes of ∆ with disorder. The curve marked δ corresponds to diagonal

disorder only when disorder = δ, curve marked α 6= 1 corresponds to off-diagonal

disorder with χ = β = 1 and disorder = α− 1 while curve marked add to additive one

with χ = (α + β)/2.

connected with the appearance of states inside the d-wave gap and its subsequent
closing. For off-diagonal disorder the changes are more complex. If we keep the
parameters β and χ describing off-diagonal disorder at their clean metal value 1
and change only α (as indicated) we observe appearance of the asymmetry in the
V-shaped gap (both in the heights of the peaks and the slopes near zero) and the
broadening of the density of states.

In Fig. 2 we show the dependence of the zero temperature gap on the
disorder. The curve marked δ corresponds to Fig. 1a and shows ∆ as func-
tion of diagonal disorder δ. Other curves correspond to an alloy with purely
off-diagonal disorder (δ = 0) which for the curve marked α 6= 1 changes as
disorder = α− 1. The curve marked add corresponds to the system with additive
disorder i.e. χ = (α+β)/2. Here χ = 1 and the difference |α−β| can be taken as a
measure of disorder. The most interesting point is to note that the rate at which
off-diagonal disorder suppresses ∆ and thus superconductivity in disordered d-wave
superconducting alloy depends on the details how the disorder is introduced.

4. Summary and conclusions

In this paper we have generalized the CPA formalism in the formulation of
Blackman, Esterling, and Berk [8] to the case of d-wave superconducting alloys
and calculated the gap function and the quasiparticle density of states. Density
of states of an 50:50 alloy with diagonal disorder only and for half-filled band is
symmetric while off-diagonal disorder introduces important asymmetries.

We have noticed that the way the gap changes with disorder depends on
the kind of disorder in the system. Typically the diagonal disorder suppresses the
d-wave gap more rapidly. As there are many ways of introducing the off-diagonal
disorder into the system i.e. different ways to make the numbers α, β, χ differ
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from 1 we have calculated energy gap for two cases and found marked differences
in its behavior. The detailed study of the properties of superconducting alloys
with off-diagonal disorder will be presented elsewhere [12].
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