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In this paper we focus on the anomalous temperature dependence

of the in-plane conductivity and symmetry mixing of the supercon-

ducting order parameter observed in various experiments on cuprates.

We show that the one-band Hubbard model is not capable of de-

scribing the physics of cuprates because the kinetic energy is lowered

in this model in the superconducting state, which contradicts experi-

mental observations. The proper model to investigate doped, short-

-range antiferromagnets is the t−J model, for which our results agree with

experiments. We analyze a spin polaron model, that is an effective model for

a doped antiferromagnet. In the framework of this model we also study the

superconducting order-parameter symmetry-mixing phenomenon. We show

that the expected mixing of d-wave symmetry with p-wave symmetry takes

place in the superconducting order-parameter at a finite value of the doping

parameter. This symmetry mixing brakes the time-reversal symmetry.
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1. Introduction

Irrefutable evidence for unconventional superconductivity observed in doped
short-range antiferromagnets (AFs) has been gathered during the last few years.
It has been observed [1] that the spectral weight of the optical conductivity is
shifted towards lower energies below Tc and in the pseudogap region, which indi-
cates that the lowering of the kinetic energy plays an important role in pairing.
The integrated spectral weight is defined as

W =
∫ ωm

0

σ1,δ(ω, T )dω, (1)

where σ1,δ(ω, T ) is the optical conductivity and ωm is a cut-off frequency. When
ωm = ∞ the spectral weight should be conserved, which is known as the optical
sum rule. That rule should, in principle, be exhausted at the cut-off frequency,
which is determined by an upper bound for the spectrum excitations mediating
pairing. For conventional superconductors, for which this sum rule is preserved,
the upper bound may be set roughly at the energy 4∆, where ∆ is the super-
conducting (SC) gap. Assuming a similar pairing mechanism in d-wave cuprates,
where the maximum gap value is 25 meV, the cut-off frequency value should be
∼ 0.1 eV to exhaust the optical sum rule. Nevertheless, it has been observed that
for underdoped Bi-2212 this cut-off frequency should be set at 2 eV to exhaust the
sum rule [2].

In the next section of this paper we will argue that the operator which
represents the kinetic-like energy and whose thermodynamic average is measured
by the optical integral, depends on the upper limit of this integral. If the upper
limit for the integration lies below the charge excitation energy U , the kinetic-
like energy should be defined by the hopping term in the t−J model (tJM). The
measurements indicate that this quantity is lowered in the SC state [1]. If the
span of the optical integral covers charge excitations, a proper definition of the
true kinetic energy relates it to the energy of hopping in the Hubbard model (HM).
In this case, the experimentally derived integral is conserved in the SC state and
no lowering of the kinetic energy is expected [2].

Another characteristic feature of unconventional superconductivity is the
mixing of pairing symmetries and breaking of the time-reversal symmetry. There
is no doubt that the dx2−y2 symmetry plays a dominating role in the SC state
of cuprates. Notwithstanding this, a strong tendency towards development of a
secondary gap component of different symmetry appears in high Tc cuprate super-
conductors. Both in the magnetic field and in Ni-doped systems an anomaly in
the thermal conductivity is observed in Bi2Sr2CaCu2O8 superconductors [3]. The
formation of that anomaly may be attributed to the mixing of pairing symmetries
and to the breaking of time-reversal symmetry [4]. An admixture of a symmetry
different from the dx2−y2 -wave may bring about disappearance of nodal lines in
the gap along the diagonals of the Brillouin zone (BZ). A locally nodeless order
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parameter [5] accounts for the enhanced density of states observed in the vortex
core in tunneling measurements. A mixed singlet triplet paring d+ip has been
invoked [6] to account for the time-reversal breaking in the pseudogap phase and
in the SC phase in Bi2Sr2CaCu2O8+δ. We are going to demonstrate in this paper
that such mixing may be generated in a microscopic model, i.e. the tJM [7]. We
will present the spin polaron model (SPM), which represents the physics of low-
-energy excitations in the tJM in the doping region, where at least short-range AF
correlations exist. This Hamiltonian is defined in the language of spin polarons,
which are temporary localized holes dressed with a cloud of spin fluctuations. In
the SPM the nature of propagation of quasiparticles and interaction between them
is determined by a tendency to restore the local AF order. It is known that two
holes in the tJM form bound states with dx2−y2 or p-wave symmetry. The d-wave
bound state has a lower energy and is the ground state. We will demonstrate that
in the SPM the mixing of the d-wave symmetry with the p-wave symmetry takes
place in the SC order parameter at a finite value of the doping parameter, which
lies at the applicability edge of the SPM. We will show that this kind of symmetry
mixing removes nodal lines in the gap along the diagonal of the BZ, which may
account for the enhanced density of states observed in the vortex core.

2. Spectral weight and the kinetic energy

The task of formulating a universal model capable of describing simultane-
ously all the experimental aspects of cuprates seems elusive. Nevertheless, it is
believed that some general understanding of the SC state in doped AF may be
gained from analysis of minimal models for such systems, e.g. the HM and the
tJM, to which the HM may reduce in the limit of strong correlations.

For models in which electrons may only hop to the nearest neighbor (NN)
sites, the optical integral is proportional with the overall minus sign to the kinetic
energy

W (T, ωm) =
∫ ωm

0

dωσ1,δ(ω, T ) ∝ 〈−Tδ〉. (2)

The answer to the question as to which part of the energy is measured by the op-
tical integral depends on where an upper limit for it is set. The HM which is sup-
posed to describe processes up to the energy scale U , is H = HhHM+HU , HhHM =
−t

∑
〈i,j〉,σ(c†i,σcj,σ + h.c.), HU = U

∑
i ni,↑ni,↓, where HhHM is the hopping term

which defines the kinetic energy at the level of the HM. The tJM may be derived
from the HM by means of a unitary transformation [7, 8] which decouples higher
energy processes from lower energy processes. To achieve this aim we chose a sim-
ple procedure based on the standard perturbation theory. The bare Hamiltonian
H = H0+H1 consists of an unperturbed part H0 and a small perturbation H1. We
assume that the degenerate subspace Φ(0) is spanned by eigenvectors |φ(0)

0 〉 of H0,
with eigenvalue E(0). The orthogonal subspace Ψ (0) is spanned by eigenvectors
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|ψ(0)
m 〉 with eigenvalues E

(0)
m of H0 which are higher than E(0) by at least a finite

gap value. When the perturbation is adiabatically switched on, Φ(0) and Ψ (0)

will evolve into orthogonal eigenspaces of H, Φ, and Ψ with defining property,
HΦ = Φ and HΨ = Ψ . For the HM in the large U limit, the hopping term
HhHM is a perturbation. Φ(0) is spanned by functions which represent states with
no doubly occupied sites, and Ψ (0) is an orthogonal subspace spanned by func-
tions which represent states with some double occupied site. H1 = HhHM may
couple a state from subspace Φ(0) with a state from subspace Ψ (0). The unitary
transformation Û , which we are looking for, transforms Φ(0) into Φ. The kinetic
energy HhHM defined for the HM after a unitary transformation to the level of the
tJM is represented by the operator

H
(tJ)
hHM = P0Û

†HhHMÛP0

= −t
∑

〈i,j〉,σ
(c̃†i,σ c̃j,σ+h.c.) + 2J

∑

〈i,j〉

(
SiSj − ñiñj

4

)
, (3)

where c̃i,σ = ci,σ(1− ni,σ), J = 4t2/U, P0 = P †0 is a projector on the space Φ(0),
and the sum over 〈i, j〉 stands for summation over NN sites. We neglect the hop-
ping between the second and third NN in the second term. The formula for the
transformed interaction term is

H
(tJ)
U = P0Û

†HU ÛP0 = −J
∑

〈i,j〉

(
SiSj − ñiñj

4

)
, (4)

where we again neglect the hopping between the second and third NN sites.
The Hamiltonian of the tJM which in the space with no doubly occupied sites,
represents the full Hamiltonian H(tJ) = P0Û

†HÛP0, is given by the sums
H(tJ) = H

(tJ)
hHM + H

(tJ)
U or H(tJ) = HhtJ + HJ . Both the transformed Hamil-

tonian H(tJ) and the transformed kinetic energy operator H
(tJ)
hHM contain terms

related to the hopping and the exchange energy in the tJM. Thus, if the system
manages somehow to lower simultaneously the hopping energy and the exchange
energy at the level of tJM, a lowering of the total and kinetic energies defined at
the level of the HM is an obvious consequence. Now we can find which part of the
energy is measured by the optical integral depending on, where its upper limit is
set. When the upper limit for integration lies above the charge transfer gap we
use the kinetic energy of the HM represented at the level of the tJM

W (T,U+) =
∫ U+

0

σ1,δ(ω, T )dω ∝ −〈HhHM〉 = 〈H(tJ)
hHM〉

= −〈−t
∑

〈i,j〉,σ
(c̃†i,σ c̃j,σ+h.c.) + 2J

∑

〈i,j〉

(
SiSj − ñiñj

4

)
〉. (5)

When the cut-off frequency is set below the charge excitation energy U , the spec-
tral weight measures the average of the hopping energy in the tJM,
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W (T,U−) =
∫ U−

0

σ1,δ(ω, T )dω ∝ −〈HhtJ〉

= −〈−t
∑

〈i,j〉,σ
(c̃†i,σ c̃j,σ + h.c.)〉. (6)

We are going to evaluate integrals (5) and (6) in the framework of the SPM.

3. The effective model, the superconducting state
and the kinetic energy

In this section we will not construct the full spin polaron Hamiltonian, but
explain the two most important processes which contribute to it. For detailed
information we refer to previous papers [8, 9]. A basic assumption underlying the
SPM is that the AF correlation length is longer than the distance at which a hole
moving in the AF background gets effectively localized in an AF spin medium. We
will show this “quasi”-localization on the example of a hole moving in the Néel
state. Let us first consider a hole created in the Néel state, Fig. 1a. This hole
spoils the local AF arrangement by breaking the NN AF bonds. The potential-like
energy is related to the Ising term, J

∑
〈i,j〉(S

z
i Sz

j − ñiñj/4). The hopping hole
shifts spins and creates defects in the AF background. These processes are depicted
in Fig. 1a–c and give rise to the increase in potential-like energy. Frustrated spins
which the hole has left in its trail tend to localize it and act on the hole as a kind of
string. Since t À J the probability of a next hop is higher than that of any process
mediated by the exchange term [8, 9]. Thus, in the lowest order approximation we
may assume that the trapped hole will only oscillate in the potential well related
to strings formed by defected spins. On the other hand, the action of the term
J
2

∑
〈i,j〉(S

+
i S−j +h.c.) in the Hamiltonian may release the trapped hole. This term

flips antiparallel spins at NN sites and restores AF arrangements, Fig. 1d. The

Fig. 1. Some processes which give rise to some hopping and interaction terms in the

Hamiltonian.
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whole process giving rise to the motion of the spin polaron from site i to site j is
presented in the sequence of Fig. 1a–d. We notice that the hopping of the spin
polarons is mediated by the hopping and exchange interaction at the level of the
tJM. The hopping of spin polarons appears in the SPM as a term ∝ h†h, where h†

and h are spin polaron creation and annihilation operators, respectively [2]. Two
holes created at distant sites may be treated as two independent spin polarons.
Two holes created on NN sites act on each other by restricting their freedom of
motion. Hopping of one of the holes spoils the AF background, Fig. 1f, which
can be repaired by moving the other hole in the same direction, Fig. 1g. This
process gives rise to a two-body attractive interaction term ∝ h+h+hh in the SMP
[8, 9]. We notice that the contribution to the interaction between spin polarons is
mediated by hopping at the level of the tJM only.

The full SPM Hamiltonian [9] describing pairing in the real space between
spin polarons at distances not greater than three lattice spacings is used in this
paper. Now we are searching for an answer to the question as to whether the SC
state is formed in the SPM and, if so, what the symmetry of that state is. We
take into account five irreducible representations of the point group of the square-
lattice symmetry: A1(s), A2(g), B1(dx2−y2), B2(dxy), and E(px(y)). In order
to achieve this goal, we embark on the Hartree–Fock analysis of the Hamiltonian
represented in terms of creation and annihilation operators to which a Fourier
transformation has been applied. Since the system which we analyze is two di-
mensional, we concentrate on the case of vanishing temperature T = 0, for which
the SC state may exist. It turns out that at a given charge concentration only
stable solutions are a pure dx2−y2 -wave state or a mixture of dx2−y2+ipx(y)-wave
symmetries. The admixture of p-wave symmetry appears in the order parameter
for relatively high hole-doping values, which lie near the border of applicability
for the spin polaron approach. Due to the admixture of the px-wave in the gap
function, the node, which exists when the symmetry is a pure d-wave, disappears
for a doping parameter higher than the limiting value δ ' 0.12. By means of
the SPM we have also evaluated the integrals (5) and (6). It turns out that both
the kinetic energy in the HM and the hopping energy in the tJM decrease in the
SC state. The lowering of the kinetic energy in the HM contradicts experiments,
which show that the integrated spectral weight (1) with the cut-off frequency put
above the charge transfer gap, does not change in the SC state.

4. Conclusions

The analysis presented in this paper allows one to state that the single-
-band Hubbard model is not capable of describing excitations across the charge
transfer gap in cuprates. Lowering of the kinetic energy in that model in the SC
state contradicts experimental observations [2]. On the other hand, experimental
observations may be interpreted in terms of lowering of the hopping energy in
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the tJM in the SC state of the doped AF, which may be attributed to the fact
that hopping in the tJM plays the role of interaction for some effective quasi-
-particles, i.e. spin polarons. We have also observed that in the SPM the SC
ground state appears with dx2−y2 -wave symmetry of the SC order parameter
for a small value of the doping parameter. The SC ground state with mixed
dx2−y2+ipx(y)-wave symmetries of the SC order parameter occurs at a finite value
of the doping parameter, which lies at the applicability verge of the SPM. The
mixing of different symmetries accounts for some experiments indicating disap-
pearance of nodal lines in the cuprates. A phase shift by π between components
of mixing symmetries leads to spontaneous time-reversal symmetry breaking. The
spin of the p-wave component of the order parameter defined in the real space is
perpendicular to the direction of the local sublattice magnetization.
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