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We have considered a model of n-layer high-temperature cuprates of

homologous series like HgBa2Can−1CunO2+2n+δ to determine the depen-

dence of the critical temperature Tc(n) on the number n of Cu–O planes

in an elementary cell. Focusing on the description of the high-temperature

superconducting system in terms of the collective phase variables, we have

studied a semi-microscopic anisotropic three-dimensional vector XY model

of stacked copper–oxide layers with adjustable parameters representing mi-

croscopic in-plane and out-of-plane phase stiffnesses. The model captures

the layered composition and block structure along c-axis of superconduct-

ing homologous series. Implementing the spherical closure relation we have

solved the phase XY model exactly with the help of transfer matrix method

for vector variables. The calculated dependence of the critical temperature

T c(n) on the block size n is monotonic with n.

PACS numbers: 74.20.–z, 74.72.–h, 74.50.+r

1. Introduction

High-temperature superconducting homologous series, like
HgBa2Can−1CunO2+2n+δ, are materials having the same charge reservoir,
but differing by the number n of Cu–O planes in a unit cell [1, 2]. They also
share the same characteristic dependence of the critical temperature as a function
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of n with a maximum for n = 3 or n = 4. The origin of this extremum is still
not fully understood, although, these groups of cuprates have been extensively
studied [3–5]. The distances between copper–oxide planes or the content of the
regions that separate them can be controlled (to some extent) in the process of
synthesis of these materials. It allows us to study, how such changes influence
the observed properties of these compounds like critical temperature or electrical
resistivity and elucidate the role of the inter-layer coupling [6, 7].

It is well known that in spite of binding of electrons into pairs, which is es-
sential in forming the superconducting state, however, its remarkable properties —
zero resistance and Meissner effect — require the phase coherence among the pairs.
Although, the phase order is unimportant for determining the value of the transi-
tion temperature Tc in conventional BCS superconductors, in materials with a low
carrier density such as high-Tc oxide superconductors, phase fluctuations may have
a profound influence on low temperature properties [8]. In particular, for cuprate
superconductors, the conventional ordering of binding and phase stiffness energies
appears to be reversed. Thus, a central problem of high-Tc superconductivity is
the issue how pairing and phase correlations develop. The measurements of the
frequency dependent conductivity, in the frequency range 100–600 GHz, show that
phase correlations indeed persist above Tc, where the phase dynamics is governed
by the bare microscopic phase stiffnesses [9].

In the present paper we propose a semi-microscopic model of n-layer
cuprates, which is founded on microscopic phase stiffnesses that set the char-
acteristic energy scales: in-plane J‖, inter-plane (in-block) J⊥, and inter-block J ′⊥
couplings (as opposed to recently presented mean-field approach for a single block
of n superconducting layers, neglecting the inter-block coupling, see Ref. [10]). We
employ an approach that goes beyond the mean field level and is able to capture
both the effects of phase fluctuations and huge c-axis anisotropy on the supercon-
ducting phase transition.

2. The model

In underdoped high-temperature superconductors, two temperature scales
of short-length pairing correlations and long-range superconducting order seem to
be well separated [8]. We consider the situation, in which local superconducting
pair correlations are established and the relevant degrees of freedom are repre-
sented by phase factors 0 ≤ ϕ`(ri) < 2π, where ri numbers lattice sites within
`-th ab plane. The system becomes superconducting once U(1) symmetry group
governing the ϕ`(ri) factors is spontaneously broken and the non-zero value of
〈exp [iϕ`(ri)]〉 appears signaling the long-range phase order. The dependence of
critical temperature on the c-axis block structure is of paramount importance for
cuprate systems, in which two-dimensional physics predominates. We consider a
multi-layer system described by the following Hamiltonian:
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H = −J‖
∑

`

∑

i<j

cos[ϕ`(ri)− ϕ`(rj)]

−J⊥
∑

i

∑
m

n−2∑

α≥0

cos[ϕmn+α(ri)− ϕmn+α+1(ri)]

−J ′⊥
∑

i

∑
m

cos[ϕmn+n−1(ri)− ϕmn+n(ri)], (1)

where J‖ > 0, J⊥ > 0, and J ′⊥ > 0 are in-plane, inter-plane (in-block) J⊥, and
inter-block J ′⊥ microscopic phase stiffnesses, respectively. The factors ϕ`(ri) are
placed in sites of a three-dimensional cubic lattice, where indices i and j run over
sites in the ab-planes of the `-th layer, while α numbers the layers within the m-th
block. The partition function of the system reads:

Z =
∫ 2π

0

∏

`,i

dϕ`(ri) exp(−βH[ϕ]), (2)

where β = 1/(kBT ) with T being the temperature. Introducing two-dimensional
vectors S`(ri) = [Sx`(ri), Sy`(ri)] of the unit length S2

`(ri) = S2
x`(ri) +

S2
y`(ri) = 1 defined by

S`(ri) = [cos ϕ`(ri), sin ϕ`(ri)], (3)

the Hamiltonian can be written in the XY -model form:

H = −J‖
∑

`

∑

i<j

S`(ri)S`(rj)

−J⊥
∑

i

∑
m

n−2∑

α≥0

Smn+α(ri)Smn+α+1(ri)

−J ′⊥
∑

i

∑
m

Smn+n−1(ri)Smn+n(ri). (4)

In terms of the vector variables the partition function in Eq. (2) becomes

Z =
∫ +∞

−∞

∏

i,`

{d2S`(ri)δ[S2
`(ri)− 1]} exp(−βH[S]), (5)

where d2S`(ri) ≡ dSx`(ri)dSy`(ri) and the Dirac-δ function δ[S2
`(ri)− 1] assures

that the integration over S`(ri) variables runs only over the values, which sat-
isfy the unit length condition S2

`(ri) = 1. Unfortunately, the partition function in
Eq. (5) cannot be evaluated exactly. However, replacing the rigid length constraint
in Eq. (5) by a weaker spherical closure relation [11, 12]
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δ
[
S2

`(ri)− 1
] → δ


 1

N

∑

i,`

S2
`(ri)− 1


 (6)

renders the model in Eq. (1) exactly solvable. The relation in Eq. (6) means
that the unit length of the S`(ri) vectors is maintained on average. However,
the direct implementation of Eq. (6) is obstructed by the lack of complete trans-
lational symmetry: grouping of layers within blocks breaks translational symme-
try along c-axis, since the inter-plane coupling varies with a period of n, when
moving from one plane to another. As a result, the three-dimensional Fourier
transform of the S`(ri) variables in Eq. (3) cannot be performed. To overcome
this difficulty, we implement a combination of two-dimensional Fourier transform
for in-plane vector variables

S`(ri) =
1

N‖

∑

k

Sk` exp(−ikri) (7)

and transfer matrix method for one-dimensional decorated structure along c-
axis [13]. This operation diagonalizes all terms in the Hamiltonian in Eq. (4)
with respect to k, leaving the dependence on the layer index ` unchanged.

3. Critical temperature

The partition function in Eq. (5) with help of the spherical closure relation
in Eq. (6) can be determined exactly and consequently, one arrives to the equation
binding the critical temperature (kBTc = 1/βc) to the number of layers n and the
phase stiffnesses J‖, J⊥, and J ′⊥:

1 =
1
n

∫ π
a

−π
a

d2k

(2π/a)2
(∂Cn(k)/∂ζ)

√
Dn(k) + ( 1

2
)(∂Dn(k)/∂ζ)

Cn(k)

√
Dn(k) + Dn(k)

∣∣∣∣∣
ζ=ζ0

, (8)

where we have defined:

Cn(k) = |Bn| − (
βJ ′⊥

2
)2|Bn−2|,

Dn(k) =
[
|Bn|+ (

βJ ′⊥
2

)2|Bn−2|
]2

− (βJ ′⊥)2|Bn−1|2, (9)

and the Lagrange multiplier ζ results from representation of δ-function in a spectral
form by the appropriate integral δ(x) =

∫ +i∞
−i∞ (dζ/2πi) exp(−ζx). The in-plane

momentum dependence of λ1(k), Cn(k), and Dn(k) comes from J||(k) dependence
of |Bn|:

|Bn| = |B2|
2

(λ
n
2
+ + λ

n
2−) +

|B1|
2

(λ
n
2
+ − λ

n
2−)[2|B2| − (βJ⊥)2]√[

ζ − βJ‖(k)
2

]2

− (βJ⊥)2

, (10)

where
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λ± =
1
2

{[
ζ − βJ‖(k)

2

]2

− β2J2
⊥

2
±

[
ζ − βJ‖(k)

2

]

×
√[

ζ − βJ‖(k)
2

]2

− (βJ⊥)2



 . (11)

The saddle-point value ζ0 can be determined from the condition that in criticality
region order-parameter susceptibility becomes infinite

Cn(k)
√

Dn(k) + Dn(k)
(∂Cn(k)/∂ζ)

√
Dn(k) + 1

2∂Dn(k)/∂ζ

∣∣∣∣∣
k=0, ζ=ζ0

= 0. (12)

The closed formulae for the critical temperature can be easily obtained only for
small values of n. However, for higher values of n we can resort to direct numerical
evaluation of Eqs. (8) and (12) in order to compute T c(n).

The dependence of the critical temperature on the number of layers n in
a block was presented in Fig. 1. Phase stiffnesses J‖, J⊥, and J ′⊥ were chosen
to satisfy J‖ À J⊥ > J ′⊥, which is physically reasonable, since the interlayer
couplings J⊥ and J ′⊥ are much smaller than in-plane phase stiffness J‖ and inter-
-layer (intra-block) phase stiffness J⊥ is greater than inter-block coupling J ′⊥.
We found that the critical temperature increases monotonically with n. This
can be simply explained: for n = 1 (single-layer system) with the fixed phase
stiffness J‖, the critical temperature is determined by J ′⊥. On the other hand, in

Fig. 1. Critical temperature vs. number of Cu–O layers within a block for J⊥/J‖ =

0.1 and J ′⊥/J‖ = 0.01 (solid line with crosses). Empty squares denote the critical

temperature dependence, T c(n) = T c(1) + 0.28(1 − 1/n), from Ref. [4] (factor of 0.28

was chosen to fit the results of the present paper). Circles represent results from Monte-

Carlo simulations of the classical XY model from Ref. [14] (the data is scaled by overall

factor of 0.77).
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the limit of n →∞, n-layer blocks are of infinite size and inter-block coupling J ′⊥
is effectively replaced by J⊥ (as in the limit of infinite blocks, inter-block coupling
is not important). Because J⊥ > J ′⊥, the critical temperature T c(n = ∞) >

T c(n = 1). For intermediate values of n, one can expect a monotonic increase in
T c(n) with increasing n, as depicted in Fig. 1. In this respect, our findings are
similar to the results from Ref. [4], where the increase in critical temperature of
members of the same homologous series due to the interlayer Coulomb interaction
was found to be T c(n) = Tc(1) + const× (1− 1/n). Similar results were obtained
by Monte-Carlo simulations [14], where T c(n) was computed numerically by means
of the Binder parameter for systems of a size up to 24× 24× 24 [15].

We conclude that the change of the number n of layers within a block cannot
alone lead to the appearance of the maximum in the critical temperature Tc as a
function of n for fixed values of the microscopic phase stiffnesses. It is necessary
to introduce another factor, which acts competitively to the effective increasing of
inter-layer coupling (for J⊥ > J ′⊥) triggered by increasing n.

4. Summary and conclusions

We study a model of n-layer cuprates of homologous series like
HgBa2Can−1CunO2+2n+δ to explain the dependence of the critical temperature
T c(n) on the number n of Cu–O planes in the elementary cell. We focus on the
“phase only” description of the high-temperature superconducting system moti-
vated by the experimental evidence that the ordering of the phase degrees of free-
dom is responsible for the emergence of the superconducting state with long-range
order. To this end, we have proposed a three-dimensional semi-microscopic XY

model with two-component vectors that involve phase variables and adjustable pa-
rameters representing microscopic phase stiffnesses. The model fully implements
the complicated stacked plane structure along c-axis to capture the layered com-
position of homologous series. We have solved the phase XY model exactly with
the help of transfer matrix method implementing the spherical closure relation and
with calculated T c(n) for chosen system parameters and arbitrary block size n.
However, the obtained T c(n) dependence obtained is monotonic with n, as op-
posed to the experimentally observed bell-shape curve. As a result, we conclude
that the change of the number n of layers within a block cannot alone lead to the
appearance of the maximum in the critical temperature Tc as a function of n for
fixed values of the microscopic phase stiffnesses. Since in homologous series with
n ≥ 3, Cu–O planes become inequivalent, charge rearrangement between layers
within a block may occur, thus inflicting the values of in-plane phase stiffnesses
and, consequently, the critical temperature. This issue will be addressed in our
future works. Additionally, it would be interesting to relate the phase stiffnesses
parameters used in the present paper with the microscopic material characteris-
tics of the electronic system (like hopping parameters, antiferromagnetic exchange,
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and Coulomb energy) to establish a link between our semi-microscopic approach
and physics of strongly correlated systems.
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