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Strong optical polarization anisotropy observed previously in the exci-
ton photoluminescence from [100]-oriented quantum wells subjected to the
in-plane magnetic field is described within microscopic approach. Developed
theory involves two sources of optical polarization anisotropy. The first of
them is due to correlation between 3-functions phases of electron and heavy
hole which arise owing to electron Zeeman spin splitting and joint mani-
festation of low-symmetrical and Zeeman interactions of heavy holes in an
in-plane magnetic field. Other optical polarization anisotropy source stems
from the admixture of light-holes states to heavy-holes ones by low-symmetry
interactions. The heavy hole splitting caused by these interactions separately
and the effects of their interference are analyzed. The domination of Cs,
low-symmetry interaction connected with quantum wells interfaces and/or
in-plane deformations takes place in relatively low magnetic field. The di-
rections of this perturbation determine main directions of the w-periodical
optical polarization anisotropy. The cubic anisotropy of valence band can
add the m/2-periodical contribution to the optical polarization anisotropy.
In the case of quantum wells with semimagnetic barriers the Zeeman term
contribution can reach value, which dominates the C5, ones, and crossover
to polarization connected with magnetic field direction may be observed in
low temperature.
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1. Introduction

The linear polarization p of photoluminescence (PL) in quantum wells (QWs)
is sensitive to relatively weak low symmetry interactions V', which mix the light
hole (LH) and heavy hole (HH) states [1-5]. One could expect due to this virtue the
polarization magnitude about ¢ = |V |/ A, < 1 (Aqr, is HH-LH energy splitting).
In contrast with such estimation of £ a strong polarization of PL from [001]-oriented
QW Cd;_zMn,Te/CdTe/Cd;_,Mn,Te and its anisotropy (i.e. dependence p on
sample rotation about QW normal) has been observed in Refs. [2, 4]. The polar-
ization increased sharply with an increase in the in-plane magnetic field B and
reaches a few tens of percents. The pseudospin formalism and the phenomenologi-
cal describing of effect were developed in Ref. [2]. The microscopic approach taking
into account the different interactions causing the HH splitting was used in [4, 5].

It is known that any interaction splitting the degenerate electron and HH
levels imposes phase correlation between the electron and hole wave functions.
This correlation forms the polarization and its anisotropy for electron—hole op-
tical transitions between the pairs of distinguishable levels regardless of value of
spin levels splitting. The small optical polarization anisotropy (OPA) caused by
LH-HH mixing is an additional one to this main contribution to OPA. The dif-
ferent interactions, which are able to lift the HH degeneracy, impose their specific
correlation between electron and hole ¢-functions phases as well as the period and
phase OPA. The effects of electron—hole exchange interaction inside the exciton
are sensitive to the small Cs, perturbation, too [6]. Nevertheless, this interaction
is small enough and, as it was discussed in Ref. [5], the effects connected with it
may be neglected in most cases at the analysis of excitonic PL of the semimagnetic
structures.

In this paper we summarize a performed in [4, 5] analysis of OPA caused
by different low-symmetry interactions of a hole in [001]-oriented QW. It will be
shown that they reveal the various OPA dependencies on in-plane magnetic field
B rotation and qualitatively new peculiarities OPA arise due to interference effect
of these contributions.

2. Theoretical background

Let us introduce the reference frame associated with structure axes so that
07 is parallel to growth axis [001], while OX || [100] and OY || [010] lie in
QW plane. An in-plane magnetic field is directed at the angle ¢ to OX, B =
B{cos ¢, sinp, 0}. The polarization ratio of PL line in relation to polarization
plane rotated relative to the B by angle about the OZ axis (see Fig. 1) is

po = (Lo = Lar) (L + Tr) . &
Here I, is the integral intensity of PL with polarization plane «; plane o' is
perpendicular to that «.
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The 1le-1HH PL-spectrum involves four optical transitions from two electron
spin sublevels to two HH ones. The electron (or HH) spin splitting w = we (or
w = wp) is assumed to be described by following matrix Hamiltonian in certain
basis |n), n =1, 2:

w0 e
Imal=2 (% <) ). @

e

where w = 2|H; 5|,sinf = —2ImH, »/w. Eigenvalues and eigenfunctions of Hamil-
tonian (2) are

w

Ej: — :l:g,

For the c-band electron, Hamiltonian H. = Ges takes the form (2) with 6 = ¢

and we = G in representation of [1) = S 1 and |2) = S |. Here | and | are the

eigenstates of spin projection s,, S is a periodic part of c-band Bloch function and

gt = %(ie-ﬁ/m +ei?/2]2)). (3)

G. || B is an effective in-plane magnetic field (in energy units) that can include
the effects of carrier—ion exchange interaction in the diluted magnetic semiconduc-
tor based (DMS-based) structures [7]. In the HH case, the basis |1) = Ly T,
|2) = —L_ | corresponds to £3/2 projection of HH angular momentum on
OZ, Ly = %(X:I:iY), X and Y are the periodic parts of v-band Bloch functions.
The dependence () has to be found for each specific form of HH Hamiltonian.

The operator of interband optical transition with polarization plane « takes
the form

o = poell540) 4 py oot ()
where pt = %(ex +iey), ex and ey are transformed as # and y. The probabilities
of optical transitions, W', = ||[Mg|]* = | <1/)§|KA/Q|1/J{,> |2, between electron states

k¥ k=41, and HH ones ¥, j = £1 are

o sin?(30/2 + a —0/2), k=j,
’ cos?(3¢/24+ a—0/2), k+#j.
Thus, Eq. (1) takes the form
A = PERLWE; = Wi I PERLOWE + W)™ (6)
kg k.j

where PF e_k‘"e/zTe/(e“’e/zTe + e_‘”e/zT@) and P}{ o< e_]'“’h/ZTh/(e“’h/zTh

()

+ e_wh/zTh) are sublevel of electron and HH populations. Here 7. and T3, are
the electron and HH spin temperatures (in energy units).
Substitution of (5) and expressions for P¥ and P/ into (6) leads to the

following simple result:

O) = — P, cos(3p + 2a — 6), (7)
Py = tanh(we /2T)2T) tanh(wy /2T3). (8)
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Equation (7) does not describe all possible polarization effects in QW. The
low symmetry perturbations V' of HH basis wave functions |1) and |2) should
also be taken into account along with HH splitting in spite of small value ¢ =
[(m|V|m+Am)|/Aur. Here |m) and |mF Am) are non-perturbed HH (|m| = 3/2)
and LH (jmFAm]| = 1/2) basis functions. It gives rise to temperature independent
corrections 8p, ~ £37A™ to total polarization ratio p, that can be now written as
a sum

pa =Py +bpa. (9)
Explicit form of 6p, depends on specific form of interaction V. Generally, the
electron—-HH optical line splits up into the four components with intensities
Iogp; o chijekPg. Each of them has a strong anisotropic polarization,
P = (W = W (W + WEs) = —kj cos(3p + 20 — 0).

If the splitting of spectral components are smaller than their line widths
okj, the polarization p depends on spectral position at the PL line contour w.
The po(w) is defined by (1) with substitution I (w) = Zk,j Tok j(w) instead of I,.
The Ik j(w) depends on line shape of transitions f j(w) = flw — (wo + kwe/2 —
Jwn/2)], where wy is the spectral position of the centre of gravity of split spectral
quadruplet. The latter feels some shift in the in-plane magnetic field due to LH-HH
mixing. The analysis of pa(w) was performed in [5] for the cases of Gaussian and
Lorentzian line shape and HH splitting smaller than ;.

The wave functions phase correlation due to HH and electron spin splitting
determines the OPA in the cases of absorption or reflectivity optical spectra, too.
As distinct from PL, in these cases optical transitions occur between completely
populated valence and empty conductivity electron states and the limit 7. and
T;, — oo should be used.

3. The HH interactions

Let us consider sequentially the HH interactions that lower the QW potential
symmetry. And let us assume that they are small perturbations with respect to
Apr,. In general, the effective Zeeman interaction in the semimagnetic structures
can lead to the hole state splitting comparable with Agp,. The OPA in such case
is connected with in-plane magnetic field direction. We will not analyze this case
in detail here.

3.1. Zeeman nteraction

Zeeman interaction HH with in-plane magnetic field is isotropic. In terms of
hole effective angular momentum J = 3/2 it has the form

Vz = Gpd = Gr(Jx cosp + Jy sin p). (10)

Here Gy||B is an effective in-plane magnetic field for holes. This Vz does not
split the HH states in first and second orders of perturbation. Third order can be
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represented by effective Hamiltonian with the Pauli matrices o in terms of basis
functions |1) and |2), calculated in second order of perturbation theory

VZ(B) = %AHLhS(% cos 3¢ + oy sin 3¢), (11)

where dimensionless parameter h = Gy, /Apy is introduced. Equation (11) gives
isotropic HH splitting wz = (3/2)Apph® and ¢-function phase § = 3¢. The po-
larization, p(ao) = — P,y cos 2a, is g-independent. If G. < T, and h’Gy < 1}, one
can find P ~ GﬁGe/TeThA%IL o B%. The LH admixture gives rise to the correc-

tions 6p(az) which for important cases of &« = 0 and o = 45° are 6p82) = —h? and
605 = 0.

3.2. Non-Zeeman interaction with a magnetic field

Symmetry of Luttinger Hamiltonian admits the existence of non-Zeeman
interaction of holes with a magnetic field [8], which has the form

V, = 1Gu(J2 cosgo—i—J;’singo), (12)
where ¢; is a relatively small parameter reflecting the interaction between valence
and I'js-conduction bands [9]. Let us note that in terms of the approach of [10],
the real magnetic field B substitutes Gy, in (12). Thus, the Luttinger parameter
q appears in the form ¢; = ¢B/Gy. If the consideration of [10] would be supple-
mented by mechanisms sensitive to the exchange field influence, the latter equality

could be modified. Presence of non-zero matrix elements of V; between HH states
|3/2) and | — 3/2) leads to the effective Hamiltonian in first order of perturbation

Vq(l) = %AHquh(o’x cos p — oy sing). (13)

Tt gives isotropic HH splitting w, = (3/2)q1 Gy and ¢-function phase § = —¢p. The
in-plane g-tensor gf;,, that can be defined in terms of Eq. (13) for HH pseudospin [9]
5y = 0,/2 and 5, = 0, /2 is isotropic, i.e. g, = gj‘y, g;‘y = gj‘x = 0. Nevertheless,
it leads to a w/2-periodical OPA, p(ao) = — P cos(4y + 2a). Tt correlates with a
cubic anisotropy of Luttinger Hamiltonian.

3.8. Potentials of Csy symmetry

Two reasons for appearance of Cs, hole potential in QW are usually consid-
ered. The first is a Cgy constituent (so-called interface Ca, potential) of hetero-
junction potential inherent in [001] oriented structures [11, 12]. In structures with
common anion (cation), the contributions of two QW interface potentials compen-
sate each other. This compensation is not complete in the case of non-identical bar-
riers or interface profile [3]. This interaction can be written in the form [11] Viy =
tif{Jo, Jy}. Here t;; is an interaction constant and {Jo, Jy} = (JoJy + JyJz)/2.

Additionally to Vif, there is also Cy potential Vi = deg,y,{Jeq, Jy. b caused
by in-plane strains [6]. Here d is a deformation potential; ex,y, is the strain with
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Fig. 1. The relative positions of the structure axis z, the axis 2’ of Cs, interaction
(14), direction of in-plane magnetic field B and the line F of intersection of the plane
of polarization with the (001) plane.

24 and yg principal axes forming some angle with [100] and [010] axes. The sum
of Vi and Vy is also Cy, potential Vi with total amplitude 7; and axes #’ and 3/
forming angle ¢ with [100] and [010] directions (see Fig. 1). Thus,

Vi =T{Jw, Jy}. (14)

The potential (14) does not lift the £3/2 HH degeneracy but results in
F1/2 LH admixture in first order of perturbation theory. This generates some
temperature and magnetic field independent polarization [3] 6p(a1) = —tsin2(p —
¢ + «), where t = Tt/ Apr,. The interference of Vz (10) and V; (14) generates an
effective in-plane g-factor for HHs [6]. It may be described by the Hamiltonian

3

Vit) = =5 Anvhtlos sin(p + 26) - oy cos(p + 26)], (15)
which defines the phase § = ¢ + 2¢ + 7/2 and isotropic HH splitting why =
3Anpht. Nevertheless, the polarization, p(ao) = —Pepsin 2(p— ¢+ a), is anisotropic,

m-periodical. If Ge < Te, wpy < Th, one can find Pep & 3GLGe/AT Ty o« B2
in agreement with data [2]. Equation (15) determines anisotropic HH g-tensor
9yigr = 9y = 0, gary = G- Let us note that in [2] there were used the
reference system axes '/ || [L10] and y” || [110] i.e. rotated relative z and y by 45°
about the z-axis. It leads to: g, = —gj‘,,y,,, gi‘,,y,, = gj‘,,x,, =0.

In-plane asymmetry of localized by a random potential (interface roughness,
defects, etc.) hole y-function leads to mixing of HH and LH states [9], too. It can be
represented as the sum of Ca, potentials (see [13] for details) with dispersed local
main axes. If there is no preferential direction for HH localization in QW plane,
this potential cannot lead to OPA. The numerical analysis [5] shows that random
potential can suppress the OPA as soon as it exceeds other regular (non-random)
interactions.

4. Interference effects. Discussion

The HH splitting was obtained isotropic for each HH Hamiltonian (11), (13),
and (15). Let us consider joint manifestation of interactions that can split HH
states
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1 . . .
[ R (wze—l?’w +wge' + wmeﬂ(”’“‘f’“/”) . (16)

The HH splitting for this interaction can be written in terms of two expressions ¢

and R:
wh = %AHLh\/ Q? + R2, (17)
Q = 2tcos2(p — ¢) — qusindep, (18)

R=h?+42tsin2(p — ¢) + q1 cos 4. (19)

The polarization p, for @« = 0 and « = 45° can be now written as

- eh\/%_hz_tSiHQ(g@_¢), O[IO,

— ehﬁ—tcos?(gp—qb), a = 45°.

Equation (20) with Eqgs. (8) and (17) are the final results of our calculations that
cover the most practically important cases.

One can see that HH splitting (17) reveals an anisotropy with finite magni-
tudes of ¢ and ¢ despite the isotropic character of HH splitting of each of term (16)
taken separately. Moreover, the effective HH transversal g-factor g1 = wy, /Gy can
be turned to zero at some direction and value of effective magnetic field (crossing
of split HH sublevels). Simplest solution of the equation g = %\/QZ 4+ R?2=101in
the case of ¢ = 0 gives ¢ = +7/4 and h = /E2 + ¢1.

As it is obvious from Eq. (20), the anisotropy and possible random degen-
eration of HH splitting do not influence OPA for high temperatures Ty > wy,
(or Pep o wp). In this case the different OPA contribution are additive and
péo) ~ —%R%‘ tanh(we/27¢), pi%) ~ —%Q?—;‘tanh(we/QTe), i.e. the m-periodical

Po = (20)

0.09 T T T

o
I=3
!

polarization p, (%)
o,/ G,

0 % 180 270 260
¢ (degree) ¢ (degree)

Fig. 2. The OPA (a) and transversal effective HH g-factor g1 = wn /G (b) calculated

for g1 =0, t=0.01, Ay, =125 meV, Te = Ty, = 2 K, and few magnitudes of magnetic

field strength h = —c\/2¢. The values ¢ 0.4, 0.8, 1, and 1.25 are used for the curves 1-4

correspondingly.
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OPA is proportional to ¢t and 7 /2-periodical one is proportional to ¢;. If HH split-
ting is not small as compared to temperature Ty, Eq. (20) leads to qualitatively
different character of OPA in the range of angles ¢ corresponding to g ~ 0 and
h > \/m Figure 2 reports some calculated curves of OPA and corresponding
effective g-factor anisotropy.

Quantitative analysis carried out in terms of Eqs. (20) and (17) shows that
experimental data of Ref. [1], where 7~ and visible #/2-periodical components
of the OPA were detected from DMS-based QW, may be described nicely with
appropriate set of parameters (see [5] for detail).

5. Conclusion

It is shown that two types of optical polarization contributions should be
taken into account for describing OPA in QWs subjected to the in-plane magnetic
field. The first of them arises owing to phase correlation of electron and hole wave
functions, which is determined by a HH splitting in a magnetic field. The second
one is due to admixture of LH to HH states.

The Zeeman interaction, ¢ term of the Luttinger Hamiltonian, and Cs, po-
tentials are considered as sources of different OPA. Their joint manifestation re-
veals peculiar OPA behavior due to interference effects. Some new effects such
as (i) the anisotropy of HH splitting due to interference of different HH poten-
tials, (ii) polarization suppression at the conditions of crossing (anticrossing) of
HH levels, (iii) depolarization effect of random potential influence are predicted.
The nature of 7/2-periodical contribution to OPA caused by ¢; term is explained.
The theory gives qualitative description for some important experimental details

of OPA found earlier.
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