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Quantum Dot Properties
in a Strong Magnetic Field
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We present a quasiclassical approach to few-electron quantum dots in
strong magnetic fields based on the notion of a collectively rotating Wigner
molecule. A quasiclassical many-particle wave function is derived and illus-
trated by its application to a two-electron quantum dot. In particular, we
calculate the density-current correlation function (conditional current) and
show that the Wigner crystal in high magnetic fields may be visualized as
an ordered system of current vortices.

PACS numbers: 73.21.La, 71.10.—w, 75.75.4a

1. Introduction

The problem of the electronic structure of few-electron quantum dots remains
in the centre of attention of solid state research [1]. Although recently substantial
achievements have been made by relying on the exact numerical solution of the
complicated quantum-mechanical problem, simple analytical models are also of
great interest and even become increasingly more popular [3, 4]. The main inter-
est in quantum dots is related to the electron—electron interaction and collective
phenomena, such as the change of the ground state multiplicity, the electron den-
sity reconstruction, and the Wigner crystallization. The application of a strong
magnetic field B is known to facilitate the manifestation of the above mentioned
phenomena. On the other hand, in the strong magnetic field limit one is able to
construct a simplified description by means of 1/B expansion.

In the present report we call attention to the manifestation of the classical
nature of quantum dots in strong magnetic fields, and illustrate the application of
a simple quasiclassical theory for quantum dots containing few (2 = 5) electrons.
This theory is based on the assumption that the electrons are located close to
their equilibrium points in a rotating classical Wigner crystal (electron ring). In
this way, we construct the many-electron wave function, obtain the density—density
and density—current correlators, and demonstrate that the interplay between the

(529)



530 A. Matulis, E. Anistmovas

magnetic field and the Euler-liquid-like behaviour of the electron liquid gives rise
to persistent currents flowing along the electron ring as well as local currents
circulating around the electron density lumps.

2. Model

We consider a 2D parabolic quantum dot containing N = 2 + 5 electrons
in a perpendicular magnetic field B. The classical analysis of this system (valid
in the limit B — oo0) predicts the formation of a single ring of radius a, = @
with electrons located equidistantly at angular positions an (o = 27/n) as shown
in Fig. 1 for the case of three electrons. It is known that a strong magnetic field
forces the electron system to rotate, and in the ground state the system tries
to compensate this rotation by incrementing its total angular momentum M. In
the limit of high magnetic fields (B~! <« 1) small deviations of electrons from
the classical equilibrium positions (harmonic vibrations) have to be taken into
account. Coupling of these vibrations to the rotation of the system as a whole
complicates the construction of a quantum-mechanical description. The situation
can be managed by introducing a frame rotating with a constant angular velocity
x 1n which the electron system has zero total angular momentum.
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Fig. 1. Local coordinates for three electrons on a ring.

In order to derive the Hamiltonian in the rotating frame we follow Maksym
[4] and start from the classical Lagrangian

L=Lnag—V, (1)

Linng = %Z (i2 = (B x ralin) | )
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where L.z is the sum of free-electron Lagrangians in a magnetic field, and V/
stands for the confinement and interaction energies. Here the energies are mea-
sured in units hwg with wg being the characteristic frequency of the confinement
potential. The coordinates are measured in units ly = \/h/m*wqy (the oscillator
lengths), and the magnetic field in units @¢/7l2 ($o = whc/e). The dimensionless
Coulomb coupling constant A = ly/a}, is expressed as the ratio of the parabolic
confinement length Iy to the effective Bohr radius afy = eh?/m*e?

3. Many-electron wave function

The details of the calculation will be published elsewhere [5], and here we
merely outline the main idea which schematically can be presented as follows:

Lcl,lab - Lcl,rot - Lcl,rot,nm - Hcl,rot - Hq,rot — Urgt — Vlap = V. (4)

We transform the Lagrangian (1) into the rotating frame and introduce the nor-
mal modes (nm) by Fourier-transforming the local coordinates (to be used in all
expressions hereafter) shown in Fig. 1. This transformation is necessary in order
to deal with the additional condition (the zero total angular momentum) that
sets the proper choice of the rotation velocity. The obtained Lagrangian La rot,nm
is time independent, and the corresponding Hamiltonian is obtained through the
standard replacement of velocities by the generalized momenta. Retaining only the
terms of the harmonic approximation we find

2
1 BI 1
Healro M+ — —U2
1,rot = 21( + 7 ) +2U0

M Muy \°
+= Z (Uk+ Uk) (Vk_ Iuk)
0

Here, the lowercase symbols uj and v stand for the Fourier transforms of the local

+V. (5)

coordinates
_q lok(n-1) ) N—1
- - Z Uk, Yn = N kz_o elak(n_l)vka (6)

while the capltals Ur and Vi are the corresponding momenta. The symbol M
denotes the angular momentum, and the moment of inertia is

I:(\/Na—l—uo)z, Iy = Na°. (7)

In the harmonic approximation the quantization of the above Hamiltonian
(5) and the solution of the Schédinger equation

(Hq,rot - E) lprot =0 (8)



532 A. Matulis, E. Anistmovas

is simple. The rotation angle y is a cyclic variable and thus the angular momentum
M is a constant of motion. Quantizing, we replace this momentum by the integer
eigenvalue of the corresponding operator. Thus, the rotational part of the wave
function is given by W(°%) = exp(iMy).

Before proceeding we need to fix the radius of the ring a. Its value is obtained
by minimizing the potential energy, namely, the first (large) and the last (small)
terms in Eq. (5). We replace the moment of inertia I by Iy in the first term, and
in the small last term the electron coordinates are approximated by their classical
equilibrium values

1 BNa?\’ 1, A
Vi) = g (00 + 255 ) v (St + o) )

Here, the factor fn = ZnNz_ll |sin(an/2)|71/2 is the Coulomb energy per electron
in a ring of unit radius. We take advantage of the different magnitude of the two
contributions and carry out the minimization in two steps. Minimizing the large
term we obtain a relation between the magnetic field strength and the ground
state angular momentum

M = M| = %BIO - %NBaZ. (10)

As expected, the momentum grows in absolute value with increasing magnetic
field. The radius of the ring a itself is obtained minimizing the smaller term of the
potential with the result

a=(Mn/2)'5 (11)
Now taking into account the expansion

L (4 BI Tl My Bl 2+1322 (12)
— — ] &= N —B*u

21 2 21 2 27 "

we see that Hamiltonian (5) is a collection of non-interacting 1D and 2D oscillators,
and consequently, its ground state wave function can be represented as a product
of the corresponding Gaussian factors.

Transforming the result into the laboratory frame within the harmonic ac-
curacy we obtain the final expression for the many-electron wave function

W = eiMx=BE/4 (13)
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Meanwhile, Eq. (9) gives the ground-state eigenvalue E(M, B, ) = Veg(a) with
an unessential energy shift.

4. Ilustration: two electrons

Now we illustrate the obtained many-electron wave function and the qua-
siclassical character of quantum dots by applying it to the simplest two-electron
case. In this case the above wave function reads

1M 1
Lp = exp {%(:lh —|— yz) [1 — %(l‘l —|— 1‘2):|

_g 827 + 22125 + 323 + (01 —3/2)2]}~ (16)
We see that it is composed of two exponents. The first one, with an imaginary
argument, is responsible for the currents in the dot while the other one, with a
real argument, describes the electron density.

Although the wave function contains the complete information about the
system, it is more convenient to consider simpler single-electron functions. Usually,
the charge distribution is described using the single-electron density

(o) = [ {4 0 )
~ /dzr’ exp {—g [32] + 2z125 + 323 + (41 — ¥2)?] }

~ exp {—%ﬁ}. (17)

We see that the electron distribution has a Gaussian profile and is centred on the
classical equilibrium radius. As this distribution does not depend on the azimuthal
coordinate y, the electron density resembles a broadened ring as shown in Fig. 2a.
As expected, the ground state density retains the symmetry of the Hamiltonian.

The electron current in the dot 1s constructed in a similar way. For instance,
the first-electron component of the many-electron current density reads

j(l)(’l‘l, 7‘2) = IHl {W*(’I‘l, 7‘2)V1W(7‘1, 7‘2)} —|— A(T1)|W(7‘1, 7‘2)|2, (18)
or
. B
M= Z(yl — y2) W (7, 7)),

. 1 B
it = > (M + Ba?) + Z(3951 + 22) | W (1, 7)) (19)
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Fig. 2. Two electrons in a dot: (a) electron density (17), (b) correlation function (22)

with one electron fixed at the point 7'

Now, integrating the obtained current components over the second electron coor-
dinates and keeping in mind that the contribution of both electrons is the same,
the single-electron current can be presented as

2a 3
and jy(r) = 0. Finally, integrating the obtained expression (20) with respect to

Jo(r) = Gy (r) = 2/d2r/j;1>(r, W) = oo (M + Ba?) () + ap(e), (20)

the radius we obtain the total azimuthal current flowing along the electron ring

I= /drjw(r) ~ %/dzrjw(r) = a% (M + Ba?). (21)
It seems that according to the condition (10) the azimuthal component of the
current should be zero. However, this condition can be satisfied only approximately
since an arbitrary magnetic field B cannot be compensated exactly by a discrete
value of the angular momentum M. Therefore, there is an azimuthal persistent
current flowing in the quantum dot as indicated by an arrow in Fig. 2a, resembling
the persistent currents in quantum rings [6].

However, the single-electron density (17) and current density (20) do not
reveal the internal structure of the electron system. For this purpose we have
to calculate the correlation functions. The simplest one is the density—density
correlation function which can be obtained directly from the wave function (16) by
fixing the second electron at the classical equilibrium position z3 = y» = 0. Thus,
we obtain the following expression for the density—density correlation function:

K(r) = [#(r, 0)[2 ~ exp —§(3x2 +o0), (22)

shown as a contour plot in Fig. 2b. It has the shape of an oval elongated in the
azimuthal direction. The dimension of this electron lump is proportional to the
inverse magnetic field strength B—1.

In order to consider the currents flowing in a Wigner crystal one has to calcu-
late the density—current correlation function (conditional current). It immediately
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follows from Eq. (19) with the second electron fixed (i.e., 2 = y2 = 0). We see
that this current has two components. One of them, proportional to (M + Ba?),
is related to the persistent current which was discussed above, while the other one
can be presented as

J(r) = _%[ez X VK (7). (23)

From the obtained simple expression we may conclude that the current lines are
perpendicular to the gradient of the density—density correlator so that the current
flows along the constant density curves as it is indicated by the solid oval with an
arrow in Fig. 2b. Moreover, it is evident that

diva(r) = —%V[ez X VK (r) = 0, (24)

that is, in the considered quasiclassical approximation the local currents circulating
around the localized electrons are conserved. Therefore, they are physically well
defined even though there is no general conservation theorem for the conditional
currents.

5. Vorticity

In order to illustrate the adequacy of the proposed quasiclassical model we
compare the calculated local currents to those obtained from the exact numerical
diagonalization of the Hamiltonian. It is convenient to consider the divergence divy
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Fig. 3. Vorticity: exact diagonalization results. N =4, A = 2, and M = —18. The black
curve indicates the zero-vorticity level, the white ovals denote the same level obtained

from the quasiclassical model.
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and vorticity w = rot,7 instead of the current components themselves. The exact
numerical results for the vorticity in a four-electron dot are shown in Fig. 3. One
of electrons is fixed at the position indicated by the black dot on the classical
electron ring (marked by the dashed circle). The positive vorticity is shown by
the dark areas, while the light areas indicate the negative vorticity. The closed
solid curve shows the zero-vorticity level. The same zero level obtained from the
quasiclassical model is indicated by the white solid oval. We note a rather good
agreement, although the real vorticity distribution is broader due to the electron
tunnelling between the neighbouring electron lumps which is neglected in the sim-
plified model.

We also verified that the divergence is much smaller than the vorticity which
confirms the usefulness of the proposed quasiclassical model.

In conclusion, we see that the obtained quasiclassical conditional currents are
well-defined physical quantities and illustrate the formation of the Wigner crystal
in quantum dots at high magnetic fields. The Wigner crystal may be visualized as
an ordered system of current vortices rather than just charge density lumps.
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