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Electron tunnelling through two quantum dots in series is theoretically
studied. A limit of intermediate coupling between the dots is considered.
The non-equilibrium Green function formalism is used to calculate electric
current and mean number of electrons accumulated on the dots. Lesser and
retarded Green functions are calculated in the Hartree—-Fock approximation
with the use of the equation of motion method. Current flowing through the
system calculated in dependency on gate voltages shows two resonant peaks,
each peak with two additional shoulders. /—V characteristics and differential
conductance in a resonance and out of resonance cases are calculated and
discussed.

PACS numbers: 75.20.Hr, 72.15.Qm, 72.25.-b, 73.23.Hk

1. Introduction

Electron transport through a double dot system has recently received much
experimental and theoretical attention, especially in Coulomb blockaded and Kondo
regimes [1-5]. An important motivation for such investigations is the idea of using
these systems for quantum computations [6].

In this work we study transport through double quantum dot (DQD) un-
der Coulomb blockaded conditions. A limit of intermediate coupling between the
dots is considered. If the interdot tunnelling is stronger than tunnelling to exter-
nal reservoirs Hamiltonian of the DQD system can be diagonalized. The double
dot can be then represented by an effective single dot with effective tunnelling
couplings to external electrodes. In a general case these couplings strongly de-
pend on the interdot coupling. Such an approach to the DQD problem was used
by several authors (see e.g. [3, 7]). Those calculations were based mainly on a
master equation. Linear conductance as a function of a gate voltage was mainly
investigated [3, 7, 8]. Here, we use the non-equilibrium Green function formalism
to study electron transport through the system. The approach allows us to find
I—V characteristics, differential conductance as well as mean number of electrons
accumulated on the dots.
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2. The model

Hamiltonian of the system consisting of two quantum dots in series attached
to external reservoirs is taken in the form

H==H;,+Hp+ Hop+ Hr. (1)

Terms Hp = ) ;5 Ek@a;ﬁak@ with 3 = L, R describe left (§ = L) and right
(f = R) electrodes in the non-interacting particle approximation. Hap describes
DQD and is equal to

H2D:ELdzdL+ERd1tLdR+UnLnR+W(dzdR+h~C~)~ (2)

Only one energy level E/3 on the dot § is assumed to be active in the transport. Ex-
periments are mainly performed in such conditions that Coulomb charging energy
and excitation energy are much larger than 7. Accordingly, only a single state
on each dot is important and double occupancy of each dot can be ignored. So,
we consider only empty or singly occupied states and omit in Hamiltonian (2) a
term describing intradot Coulomb interaction. The interdot Coulomb interaction
is taken into account via the Hubbard term with the correlation parameter U. The
last term in Hamiltonian Hop (Eq. (2)) describes tunnel interdot coupling with
the strength W. Tunnelling processes between DQD and the external electrodes
are included in Hy (Eq. (1)) which takes a form: Hp = Zk@(tk@a%dﬁ +h.c), typ
denotes here a tunnelling amplitude.

The Hamiltonian Hsp can be diagonalized by means of a unitary transfor-
mation [7]. The transformation allows us to represent DQD by a two-level effective
dot. The procedure is justified when the interdot tunelling is stronger than cou-
plings to external electrodes. This new system can be described by the following
Hamiltonian:

2
H=Hr+Hgr+ Z Eictei+Ucferedes + Z(T,ﬁﬁazﬁci + h.c.), (3)
i=1 kpi
E; are energy levels of the effective dot. They depend on Fp, Eg, and the interdot
coupling W [7]. Matrix elements T,gﬁ describe tunnelling processes between the
two-level dot and the electrodes [7].

3. Non-equilibrium Green function formalism

To study electron transport through the system described by the Hamilto-
nian (3) we introduce the retarded G7; (advanced G;) and lesser G Green func-
tions, which are defined in a standard way [9]. The equation of motion method is
used to calculate both retarded and lesser functions in out of equilibrium state [10].
Higher order functions are split according to Hartree-Fock approximation. The
same approximation scheme is used for G and G<. So, both functions are calcu-
lated on equal footing.
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Electric current I flowing through the system with a bias voltage applied
can be expressed in the form [11]

_ ¢ dE ~r o m=rnL . L (= _Rm ST
= 2h | 27 ZZ: [F“ i + L Ly + TR IS S AT

2
x |Gil* (fr. = fr) (4)
and a mean number of electrons on the level ¢ is calculated according to the formula
dE dE /- -
77,2—<CZ cl> ¢ 27TGZZ / o (Fzsz+Fzz fR) |G“| (5)

In the above expressions fs denotes the Fermi-Dirac distribution function. Ff;

can be expressed in terms of the bare couplings I'¥ = 27y |tk@|2 8(c — egp), the
interdot coupling W, Ey,, and Fg [7]. I8 and ]N“Zﬁ_l describe here certain effective

22

coupling parameters which are related to Ff; [11]. One can see (Eq. (5)) that ]N“f:

determine G5 function. Similarly, ]N“Zﬁ_l determine G ;. Electric current I and n;
are calculated self-consistently.

4. Numerical results

Formalism described in the previous section allows one to investigate a gen-
eral case with DQD coupled symmetrically or asymmetrically to the external leads.
Here, we discuss and present numerical results only for the symmetrical case. Tun-
nelling couplings I'Y, I'f between DQD and the two electrodes are assumed to be
the same and equal to I'. In the following I is treated as an energy unit. Calcula-
tions are performed for interdot correlation parameter U/ = 167" and temperature
T = I'/k. The interdot coupling W is treated as a tunable parameter. Positions
of energy levels £ and Eg in the coupled dots can be independently changed by
gate voltages Vyr, Vyr applied to L and R dots, respectively.

Figure 1 presents in the grey scale electric current I flowing through the
DQD system under a bias voltage V' = 2I'/|e| in dependence on gate voltages
Vyr, Vyr. The figure shows that transport is possible only for certain values of
gate voltages. There are two sharp resonance peaks when energy levels of the
effective dot F; or E; + U enter a tunnelling window. When gate voltages V;r or
Vyr are swept electrochemical potentials of the L and R dots can be aligned and
resonant tunnelling can take place. The current is enhanced along the solid line, for
which this condition is fulfilled. However, each peak shows two additional shoulders
marked in the figure with dashed lines. The shoulders appear when the level F;
or Fs of the effective dot enters a tunnelling window. Some changes in £ or Fg
induced by gate voltages Vyr or Vyr do not change substantially £ (E53), so the
levels still appear in the tunnelling window. Increasing W, i.e. the strength of the
interdot coupling, produces more pronounced shoulders. The results are consistent
with the ones calculated by Ziegler et al. with the use of a master equation [7].
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Fig. 1. Electric current in a grey scale in dependence on gate voltages calculated for

W =2I", B, =4I, V = 2I'/le|.

0.6

0.5

041  —---- —-4r I
0.3 I

0.2 - P

Current [eT/2f]

0] f-T :

0.04: ; . ‘ . :
0 10 20 30 40 50 60
ev[r]

Fig. 2. Current in dependency on bias voltage for W = 2I" in a resonant case A = 0
and out of resonance cases A =4]", A= —4]".

I—V characteristics are presented in Fig. 2 for interdot coupling W = 27".
Characteristics are taken for three different situations, namely in the resonant case
with A = Fr — FEr = 0 and 1n two out of resonance situations with A = —47
and A = 47", The current through the DQD system is resonantly enhanced when
the levels of L and R dots are aligned, i.e. £ = ERg. In out of resonance cases
(A = —4I', A = 4T") current is much smaller. In all cases the current shows a
stepwise increase with increasing bias voltage. The step appears when an additional
level enters a bias window, so an extra transport channel opens. Figure 2 shows
that only some current steps are well visible. To analyze the problem we calculate
the differential conductance Gqisr.

In the resonant case (A =0,Fr = FER) Gaigr shows four well-defined peaks
(Fig. 3a). A peak in Gaig appears when a mean number of electrons n; = <cj’ci>
(i=1, 2) accumulated on level E; of the effective dot increases. It can be seen in
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Fig. 3. Left panel: Differential conductance (solid line) and mean numbers of electrons
n1 (dotted line) and ny (dashed line) as functions of bias voltage for W = 2" in a
resonant case A = 0 (a) and out of resonance cases A = 47" (c), A = —41" (e). Right

panel: Number of electrons nz, ng on left and right dots.

the figure where n; and ns are also presented as functions of bias voltage. In the
region of small voltages the low-energy level F; is mainly occupied. An increase
in ny leads to a decrease in ny which is a result of Coulomb repulsion U between
electrons. In the resonant case with energy levels of the both dots aligned a mean
number of electrons ng = <d2{d3>(6 = L, R) localized on the left and right dot
is practically the same (Fig. 3b). ng shows a stepwise increase with bias voltage
increasing.

In out of resonance case with A = 41" three peaks in Gaig are visible (Fig. 3¢).
In this case the distance between levels £1 and F» of the effective dot 1s quite con-
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siderable. The energy level £y starts to fill up and becomes almost fully occupied
at relatively low voltages, whereas E3 remains empty (Fig. 3c). A strong increase
in n; leads to a high peak in the conductance. An increase in ns gives only a
cusp in Ggig. In the high voltage region n; is practically constant but ns starts to
increase when Fa + U enters a tunnelling window. So, for high voltages only one
peak corresponding to E3 4+ U can be observed in Gyig.

For A = —4I" the main peak in Ggig corresponds to the zero bias and
no blockade is obtained (Fig. 3e). In such a situation the right dot is almost
half-occupied, the left one is almost empty and the current can flow through the
system under a small bias voltage applied. With increasing V' a mean number of
electrons on the dot R — ng diminishes substantially and a number of electrons
on the left one — np starts to increase (Fig. 3f). Similarly, n; decreases and the
level Ey becomes almost empty, whereas ns increases and the level 5 starts to fill
up (Fig. 3e). The peak which corresponds to an increase in ny overlaps with the
main peak in Ggig, so the two peaks are not resolved. Only some enhancement
in Ggig can be observed. In the high voltage regime occupation numbers n; and
no start to increase when levels Ey + U and Es + U one after the other enter
a tunnelling window. The appropriate peaks are well visible in Ggig. However,
amplitudes of the peaks are different.

Close relations between occupation numbers of the two coupled dots and
positions as well as amplitudes of the conductance peaks for a resonant case and
out of resonance ones were found by Klimeck et al. [8]. However, they discussed
a linear conductance (G, whereas we present results obtained for the differential
one Gyifr.
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