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Light Propagation in a Magnetic Field:
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We studied the spectral properties of the matrices describing multiple
scattering of electromagnetic waves from randomly distributed point-like
magneto-optically active scatterers under an external magnetic field B. We
showed that the complex eigenvalues of these matrices exhibit some universal
properties such as the self-averaging behavior of their real parts, as in the
case of scatterers without magneto-optical activity. However, the presence of
magneto-optically active scatterers is responsible for a striking particularity
in the spectra of these matrices: the splitting of the values of the imaginary
part of their eigenvalues. This splitting is proportional to the strength of
the magnetic field and can be interpreted as a consequence of the Zeeman
splitting of the energy levels of a single scatterer.

PACS numbers: 42.25.Dd, 78.20.Ls

1. Introduction

Wave propagation in complex media is a broad and interdisciplinary re-
search topic, with many applications [1-4]. Media exhibiting broken symmetry
such as magneto-optical and/or chiral media, novel disordered materials such as
strongly scattering semiconductor powders, and natural media such as the subsur-
face of the Earth are just a few examples of complex media in which wave prop-
agation has been recently studied. In particular, the presence of magneto-optical
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activity, associated with the breaking of time-reversal symmetry and very well
studied in homogeneous media [5], was shown to be at the origin of a new class
of optical phenomena in inhomogeneous media. For instance, the suppression of
coherent backscattering effect by the Faraday rotation was extensively studied,
both experimentally [6-8] and numerically [7—9]. Theoretically, the influence of
magneto-optical activity on the coherent backscattering cone was investigated by
MacKintosh and John [10], van Tiggelen et al. [11] and Lacoste and van Tigge-
len [12]. Tt was theoretically suggested [13] that the Faraday effect generates a
magneto-transverse light diffusion in random media similar to the electronic Hall
effect. This so-called photonic Hall effect, which finds its origin in light scattering
by one single Faraday-active scatterer, was recently observed [14, 15].

In spite of these extensive studies over the last years, the impact of mag-
neto-optical effects on some open and fundamental phenomena is still unknown.
The study of the onset of Anderson or strong localization of light is one of them.
Anderson localization refers to an inhibition of wave transport in disordered me-
dia due to the interference of multiple scattered waves [16]. Anderson localization
of light was recently reported in semiconductor powders [17] and disagreement
even exists without magnetic fields [18]. As an alternative, it was realized that
clouds of laser-cooled atoms constitute a promising scattering media in which
Anderson localization of light could be achieved [19]. In fact, they constitute a
perfectly monodisperse and non-absorbing system of resonant point-like scatterers
with large cross-sections and huge magneto-optical effects [20]. A deeper under-
standing of the onset of the localized regime in such media, including the role of
magneto-optical activity, is thus needed and this constitutes the main motivation
for the present work. This motivation was stimulated by the first experiments on
multiple light scattering in cold atomic clouds [21], including the observation of
the coherent backscattering effect in cold rubidium [21] and strontium [22]. Es-
pecially for strontium, mimicking a two-level atom near the frequency where the
experiments have been conducted, should be very well described by the present
study.

We will investigate electromagnetic wave propagation in magneto-optically
active media within the framework of the ab initio approach introduced earlier
by Rusek and Ortowski [23]. This approach is based on a study of the spectra
of the Green matrices describing wave scattering from an assembly of randomly
distributed point-like dipoles (i.e., particles much smaller than the wavelength of
light), and has been employed to investigate Anderson localization of scalar waves
in the case of a 2D system [24] with nontrivial boundary conditions [25]. Tt was
shown that the spectra of these random Green matrices exhibit some universal
properties, such as the “clustering” of the real part of their eigenvalues emerging
in the limit of an infinite medium, which was interpreted as the appearance of
localized states [23, 26]. In the present paper we modify this method in order to
include the magneto-optical activity inside the dipoles.
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2. T-matrix in the presence of a magnetic field

In the following, we deal with classical magneto-optical dipoles located in
vacuum. The 3 x 3 T-matrix #(k) describes the light scattering by one particle and
exhibits a scattering resonance at frequency wq with line width I' (k = w/¢g is the
wave number) [11].

All multiple scattering processes in an assembly of N magneto-optical scat-
terers situated at the positions r, 7, ..., ry are fully described by the 3N x 3N
M matrix [23-27]:

M(k) = T(k) - [U— G(k) - T(k)]™, (1)
where U is the 3N x 3N unit matrix, T(k) is a 3N x 3N matrix which has 3 x 3
diagonal blocks equal to #(k) and zeroes otherwise, and the 3 x 3 blocks of the
3N x 3N G-matrix are given by

_exp (ikrnm {( U— ?nm?nm)

477 nm

Gum(w) = - (m + m) [U-— 3?nm?nm]} forn#£m, (2)
0 for n =m
(m,n=1, 2,...N). Gpn, may be understood as an electric Green function of the

Maxwell equations calculated from the relative positions of the N dipoles [28].
The 3 x 3 total T-matrix is given by

N N
Tk,k' _ Z Ze—ik.rm aneikl~7'n’ (3)
m=1n=1
where M,,, is the mn-th 3 x 3 block of the 3N x 3N matrix M, and k and ¥
are, respectively, the incident and the scattered wave vectors, and in the far field
K| =kl =k =w/co.
Equation (3) determines the electric field scattered by the magneto-optical
dipoles. Tt requires the diagonalization of the M-matrix (1).
The t-matrix describing one single scatterer #(w) can be expressed as a Born
series [28]:

Hw) = V(W) + V() Go(w) - V(w) +...= [ﬁ - Go(w)] o (4)

where V(w) is the optical potential for a point scatterer and Gy(w) is the return
Green function, i.e., the dyadic Green function Go(w, r) evaluated at » = 0. The
optical potential is, in contrast to the case of quantum mechanical scattering theo-
ries, frequency-dependent and for a dipole at the position r; subject to an external
magnetic field B it takes the form

Viw, r) = — (i)z a(B)s(r — ), (5)



342 F.A. Pinheiro et al.

where a(B) is the polarizability tensor of the scatterer. It has the dimension of a
volume which represents the microscopic size of the dipoles and is typically of the
order of a3 (ag — the Bohr radius), but can be much bigger when the Rydberg
states are involved in the transition. For a magneto-optical dipole the polarizability
a(B) is given by
1 U
m . + L(B), (6)
where ay is the ordinary polarizability of the scatterer [29] and £(B) is a magneto-
-optical correction. We shall restrict ourselves to linear orders in B, in which case
this correction is given by [11]:

Li;(B) = B(B)icij By, (7)
where i¢;;; By, 1s an antisymmetric Hermitian tensor in terms of the Levi-Civita
tensor €;;5, B = |B|, and B = B/B. The dimensionless quantity 3(B) is defined

s 2
by 3 = 4rc_ VB (L) , with V' the Verdet constant of the scatterer [11].

= s T\

Equation (2) shows that the matrix elements of the return Green function
Go(w) exhibit singularities at » = 0. This feature can be handled by regulariza-
tion [29]:

Go(k,7=0) = (6% + 16%) U. (8)
The inverse length scale A defines wy and I" by the relations 1/4 = (wq/c)?(ao/67)
and 1/A = (I'c/w}), respectively. Using Eqgs. (8) and (4), we can write

2 2

7 (w) = V7' (w) - Golw) = 6% ( - ‘ﬂ) Uiz - Z—gE(B), (9)
where Eqgs. (5), (6) have been used. Assuming that wgl" < 1 (for an atom, typically
wol' 2 107%) we can put, close to the resonance, w = wy, and introduce the
detuning A = (w — wp)/I". We can rewrite the total scattering matrix M(w) in
Eq. (1) as

dmeq

“ ) - £(B)| (10)

M) = 7 a4 %Ui -
wo

Let us notice that the only frequency dependence of the total scattering matrix

(10) near the resonance is contained in A. Equation (10) shows that to find the
T-matrix in Eq. (3), we need to diagonalize the matrix

Giio (wo) = i—?G(uo) +L(B). (11)

This matrix is independent of the frequency w and the presence of the second term
in (11) makes the difference with previous works [23-27].

In the following section, we will numerically diagonalize the matrix Guyo
for an arbitrary number of scatterers and investigate the consequences of the
magneto-optical activity for the distribution of its eigenvalues.
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3. Results and discussion

As an example of a typical distribution of the eigenvalues A of the randomly
chosen Gyo matrix, in Fig. 1 we plot the real and the imaginary parts of the
spectrum of Gyo for a configuration of N = 1000 resonant dipoles in a sphere,
with the uniform density p = 1 scatterer per wavelength cubed A3. This situation
resembles the case of scalar scatterers [23-27]. We observe that eigenvalues tend
to “cluster” themselves around the line ReA = —1. Previous numerical work has
shown that this kind of behavior appears by increasing the size of the system
[23-27]. This fact suggests that in the limit of an infinite system all the eigenvalues
will move toward the value ReA = —1, a transition that may be interpreted with
the formation of a band of localized states [23-27].
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Fig. 1. Spectrum of the Gyo matrix corresponding to an arbitrary configuration of
N = 1000 point-like scatterers calculated with a vanishing value of the external mag-
netic field. This situation corresponds to the case of scatterers without magneto-optical

activity.

The impact of the magneto-optical activity on the spectra of the matrix
Gho can be seen in Fig. 2 where we plot the real and the imaginary parts of A(B)
calculated with the same parameters as in Fig. 1 but now with a nonzero value of
the external magnetic field (5(B) = 5). We can observe not only the tendency of
the eigenvalues to “cluster” themselves around the line Red = —1, as in the case
of scatterers without magneto-optical activity, but also a striking consequence of
the magneto-optical activity: the splitting of the values of the imaginary part ImA
of the eigenvalues. In order to explain this result, one should recall the physical
meaning of the real and imaginary parts of the eigenvalues of the Gyp matrix.
Within our model for each single scatterer, which exhibits an internal scattering
resonance (also called the Breit—-Wigner type resonance), the real and imaginary
parts of the eigenvalues correspond approximately to the relative width and to the
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Fig. 2. Asin Fig. 1, but now with a non-vanishing value of the external magnetic field.
The value of the dimensionless magnetic field strength parameter is (B) = 5.0. Let
us notice the splitting of the values of the imaginary parts of the eigenvalues, which is

absent in the case of scatterers without magneto-optical activity exhibited in Fig. 1.

ima ]
10 - AR 2 :

5| : l

0_:‘ . .. . ‘?.;? |

5. i ]

o e

_15 1 1 1 1 1 1 1
-1.0 -05 00 05 1.0 15 20 25 3.0
Re A
Fig. 3. As in Fig. 2, but now with a value of the magnetic field strength parameter
twice larger, i.e., 3(B) = 10.0.

positions of the resonances, respectively [27]. As a result, the observed splitting
of the values of ImA can be interpreted as a consequence of the Zeeman splitting
of the energy levels of each scatterer induced by the application of an external
magnetic field.

This interpretation is confirmed by the results shown in Fig. 3, where we
have calculated the spectra of the Gyo matrix for the same number of scatterers
and parameters used in the previous figures but now with a magnetic field strength
parameter 3(B) twice larger than in Fig. 2, i.e., 3(B) = 10. By comparing the
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positions where the values of ImA tend to distribute themselves with the ones in
Fig. 2, we notice that they are effectively linearly proportional to the magnetic
field strength parameter 3(B). This fact confirms that the observed splitting of
the values of ImA actually reflects a genuine Zeeman splitting of the energy levels
of a single scatterer. In addition, we observe that for a larger value of the magnetic
field, the distribution of the values of ImA around their split positions tends to be
less pronounced.
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Fig. 4. Surface plot of the density of eigenvalues P(A) calculated for 100 distinct con-
figurations of N = 300 point-like scatterers. The value of the magnetic field strength
parameter is 3(B) = 5.0.

In Fig. 4 we plot the probability distribution P(A) calculated from 100 dis-
tinct realizations of the disorder of 300 scatterers distributed in a sphere with
uniform density p = 1 and subject to an external magnetic field. The probability
distribution P()) was normalized by [ d*AP(X). The inspection of this plot reveals
that values of ImA are approximately equipartitioned between the three split po-
sitions in the TmA axis induced by the external magnetic field. Furthermore, P(})
tends to move towards the ReA = —1 line, as observed in the case of scatterers
without magneto-optical activity [27]. This “clustering” behavior of the spectra
of the random Green matrices, which we now also verify when the form of these
matrices is modified by the presence of an external magnetic field, seems to be,
as pointed out by Rusek et al. [27], a truly universal behavior for random Green
matrices for which some simple underlying explanation argument should exist.

4. Summary and conclusion

In conclusion, we have investigated the properties of the matrices that de-
scribe multiple scattering of electromagnetic waves by the Faraday active dipoles
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subject to an external magnetic field. These matrices can be expressed as a sum
of the complex-symmetric random Green matrix, whose elements are equal to the
free-space Green function calculated from the positions of each pair of scatterers,
and a block-diagonal matrix, linearly proportional to the magnetic field, which
is associated with the magneto-optical correction. We have shown that the spec-
tra of these matrices exhibit the same universal property as in the absence of
magneto-optical activity, which is the “clustering” of the real part of their eigen-
values around the line ReA = —1. However, the presence of an external magnetic
field modifies the spectra in a striking way: it induces a splitting of the values of
the imaginary part of the eigenvalues. This splitting is proportional to the strength
of the magnetic field. Physically, since the imaginary part of the spectra approx-
imately corresponds to the locations of the resonances of a single scatterer, this
splitting of the spectra can be interpreted as a genuine Zeeman splitting of the
energy levels of a single scatterer. We think that results presented here constitute
an important step for the study of the phenomenon of the Anderson localization
of light using the framework of the random Green matrix method. In order to un-
ambiguously study the onset of the localized regime in media subject to magnetic
fields, one should investigate further aspects of light propagation in such media,
such as, for instance, the pattern of the coherent backscattering cone. The study
of the backscattering cone in such a medium can provide some predictions about
the magnitude of the transport mean free path in the localized regime. These
predictions could be experimentally verified, for instance, in clouds of cold atoms
exhibiting important magneto-optical effects. These aspects are under investiga-
tion and will be reported soon.
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