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We investigate numerically the problem of optimization of directional
characteristics of dipole antennas located inside, or in the vicinity of, pho-
tonic crystals or more general artificial dielectrics, made of very thin per-
fectly conducting wires. We concentrate on two-dimensional propagation.
Simulated annealing is used to find the distribution of wires which optimizes
the directional pattern. It is demonstrated that high directivity can be ob-
tained for systems containing a very small number of elements provided that
the size and shape of the unit cell as well as the position of the radiating
source with respect to the crystal are optimized. Building up of the radiation
pattern is also illustrated with the help of the wave-optical rays.

PACS numbers: 41.20.Jb, 84.40.Ba, 42.25.Bs

1. Introduction

The amount of applications of photonic crystals in various fields of optics,
solid state physics, and technology has recently become rather impressive [1-3].
They include, among others, two-dimensional band-gap laser [4, 5], a new type
of wave-guiding mechanism, associated with guiding and bending of electromag-
netic waves through localized coupled-cavity modes [6], an increase in the photon
lifetime along with extremely small group velocity at the coupled-cavity wave-
guide band edges [7]. In addition, there exist extremely interesting proposals for
novel applications, like those concerning threshold-less semiconductor lasers [1, 8]
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and single-mode light-emitting diodes [9, 10]. Important applications to the prob-
lem of design of microwave antennas [11] with a very high directivity have also
been found [1, 12-16]. Both one-dimensional multilayer dielectric structures and
three-dimensional photonic band-gap materials have been used. A particularly
interesting configuration has been proposed in [16], where the photonic crystal
with a negative effective refractive index has been applied to obtain an extremely
high directivity. There can be no doubt that the novel optical materials will offer
vast improvement in the antenna performance. The purpose of this paper is more
modest, however. We would like to investigate to what extent one can improve the
directivity of an antenna located inside or in the vicinity of an artificial dielectric
(AD), either under the condition that our AD should in fact be a photonic crystal
with a well-defined unit cell, or under no conditions at all, that is, admitting par-
tially or fully disordered systems. It is shown that surprisingly few elements are
necessary to obtain a very high directivity of antennas, if the positions of those
elements are optimized. On the other hand, an unoptimized photonic crystal can
work much poorer than an optimized random structure.

The main body of our work is organized as follows. In Sec. 2 we provide
a detailed specification of a simple model of artificial dielectric which is used in
the numerical simulations. Section 3 contains description and analysis of numerical
results pertaining to the structure of optimized forms of ADs as well as the analysis
of radiation patterns. In Sec. 4 we include some final remarks and discussion of
the prospects of further research.

2. Model and its solution

Multi-parameter global optimization, which we attempt to perform here, is a
very difficult task. In general, one cannot hope to obtain a really global minimum
of a function of many variables; one can only hope to approach a relatively deep
local minimum. And even if one is ready to accept this, there is an additional
difficulty: global optimization is numerically expensive and time consuming. In
order to minimize the time necessary for our numerical simulations, we decided
— 1in this first attempt — to drastically reduce the complications and employ a
very simplified model of elements which form the artificial dielectric. That 1s, our
elements are assumed to be infinitely long parallel perfectly conducting wires. The
source of radiation is another such wire antenna, parallel to all the other ones,
with prescribed linear current density Iy. The point in the (#, y) plane, where it
is located, will be denoted by 7y. This model allows us to perform a large part of
calculations analytically, and they are in addition rather simple.

Since all our sources are parallel infinite wires, the propagation of radiation
is just two-dimensional, so that we consider here only the propagation of E-waves.
The time dependence is assumed to have the form exp(—iwt). Let us choose the
z-axis to be parallel to the wires. Then the Maxwell equations for the components
. of the electric field and H,, H, of the magnetic field take the following form:
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where pg 1s the vacuum magnetic permeability, €g is the vacuum electric permit-
tivity, and J, is the current density including currents induced in the wires.

From the above equations we immediately obtain the Helmholtz equation
for F,

(VI+k?) B, = —ipowl., (2)
where V2 = 92 /9x? + 9% /0y?. The solution to the problem (2) is given by

E,(r) =ipow lim G(r— 7). () + E2r) + ,—ﬁJZ(r). (3)
5=0 Jg_g, iweg

In the above equation S is the total two-dimensional space, whereas S5 is a sum
of “principal surfaces” which exclude singularities of G(» — #'); Ss becomes in-
finitesimally small as their maximum chord length approaches zero [17]. In our
case, the surface S5 comprises n small surfaces covering the points in the (z, y)
plane, where the wires are located. The field E? is the solution to a homogeneous
Helmholtz equation, which is in our case the field due to the prescribed antenna
current. Finally, the source dyadic L appears here to make the solution rigorous in
the region, where sources are present. Indeed, as has been shown by Yaghjian in
Ref. [17], the dyadic L is, in generic case, necessary to obtain correct solutions in
that region. However, the appropriate Ls in two-dimensional problems are trans-
verse, that is, they do not contain any mz component (m = #,y, z). This means
that in our case the last term in Eq. (3) actually vanishes, and the resulting electric
field simplifies to

B (r) = ipow Z G(r—m); + E2(r), (4)

because all wires are infinitely thin, so that

J.(r) = ijé(r— 75),

where I;, j=1,2,...,n are induced currents associated with each wire. We must
remember, however, that — when calculating the field at each point, where the
current is different from zero — an infinitesimally small surface surrounding the

point with non-zero current should be excluded from integration. In practice, this
leads to the vanishing of diagonal elements of a characteristic matrix g;; (see
below), which is to be inverted to obtain currents ;.
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Since our wires are infinitely conducting, the electric field must vanish at
each point r;, so that

0= 1/10wZG )1 —I—E( i) (5)

The Green function of the Helmholtz equation which satisfies the equation
(Vtz + kz) G(r, 7))y = —=6(r— 1) (6)
is given by [18]
1.
G(r—7) = ZlHé(k|7‘—7‘/|), (7)

where H! () is the mth-order Hankel function of the first kind, and argument
[19]. Thus, we can rewrite Eq. (5) as a system of linear equations to obtain the
current densities [;

Zgiﬂj = €04, (8)

ji=1
where

1.

9ij = 7 H (Kl = ;) (9)

and g;; = 0, while
1.
eoi = —ZlHé(/dri — 7ol). (10)

From the Maxwell equations we obtain the complete solution for the fields

EZ(T):_ZNOWZHO (klr— v ,
j=0

— Y
:——kZ| ]H1k|r I,

1. o~ & —
Hy(r) = Zlkz _r;|H11(k|r—rj|)Ij. (11)
J

Using asymptotic expansions of the Hankel functions, we obtain the following
formulae for the Cartesian components of the Poynting vector in the radiation zone:

1 w . "
Se = —§EZH;; = {iGOTT cos(qS)ZeXp ik (|r—»j| = |r— D] L I},
il
1
SyziE H*— sm Z ik (|r—»j| —|r—m])] LT, (12)
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where (7, ¢) are the polar components of the observation point . Since 3> r; for
every j, the argument of the exponential function can be further simplified to give

|7,_rj|_|r_r,|:r,cos(¢—¢>l)—7°j COS(¢‘¢J’)~ (13)

The (unnormalized) far-zone radiation pattern becomes thus:

P(¢) =S, = r(Sy cos ¢ + Sy sin¢) =

o> exp ik (v cos(6 — é1) = 1 cos(é — &) I (14)

Jil

and 1s explicitly real.

3. Numerical results

We have decided to define the function to be optimized as follows. We have
taken a large natural number N (eventually N was chosen to be equal to 1440),
and, for ¢, = =7+ 2am/N, m=0,1,2,... N — 1, have defined two sums

—¢0<¢m <o

and

Uy = Plom) (16)

for a small angle ¢y. The optimization problem has been defined as that of mini-
mization of the following ratio:

ryi60) = 12 (17)
1

We have experimented with several values of the angle ¢g before choosing it to be
equal to w/72.

Our optimizations have been performed using two freely available Fortran
routines: the simulated annealing code simann, available from www.netlib.org,
and the program DIRect by J. Gablonsky. The frequency of radiation has been
chosen to be equal to 10 GHz, but all other frequencies are obviously available
by trivial rescaling. In our tables and figures we have used SI units to specify the
(sub)optimal location of the wires. As already stated above, the absolute optimum
is extremely difficult to obtain, and we can only claim that we have reached a deep
local minimum, or have approached 1t closely.

Optimization of antennas in the vicinity of potentially completely disordered
system formed the first part of our numerical experiments. The optimization rou-
tines have been allowed to change both coordinates of all (4 or 8) wires — they
have only been constrained by the requirement that the whole structure is invari-
ant under reflections with respect to x axis. In this sense we call such structures
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“random”. The local minimum found gives a rather poor value of ¢; still, the max-
imum near the angle 0 is well visible, and turns out to be much better than for an
unoptimized crystalline structure. The coordinates of wires corresponding to the
local minimum are given in Table I and illustrated in Fig. 1, while the normalized

radiation patterns are shown in Fig. 2.

TABLE 1

Coordinates of wires are shown which resulted from an attempt to optimize the ra-
diation pattern without imposing the condition of regularity of the structure to be
formed by the wires, except of the reflection symmetry with respect to the y axis.

A. Structure with four wires
z(m) | 5.8310 | —0.0385 | 5.8310 | —0.0385
y(m) | —0.2395 | 0.1395 0.2395 | -0.1395
B. Structure with eight wires
x(m) 8.9865 3.3558 | —4.6385 | 4.6585 | 8.9865 | 3.3558 | —4.6385 4.6585
y(m) | —0.0579 | —5.6703 | —0.6745 | —0.4340 | 0.0579 | 5.6703 | 0.6745 0.4340

y (m)
4+ i
4-wires system ©
8-wires system %
location of the source @
2 | i
* *
[m]
o I} o ¥

Fig. 1. Suboptimal locations of wires in structures for which optimization involved
changing both coordinates & and y. Systems with 4 and 8 wires are shown. The data

have been taken from Table I. The wavelength is equal to 0.189 m.

“Normalized radiation pattern” means that we actually plot the following
quantity:

N-1

Pi(¢) = P(¢)/ Y P(¢m).

m=0
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Fig. 2. Normalized radiation pattern for according to
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Fig. 3. Wave-optical rays for the 8-wires two-dimensional “random” structure.

In Fig. 3 we have plotted 99 trajectories of the wave-optical rays, that is,
the curves which are tangent to the Poynting vector at each point. As they are
obtained by integrating numerically the following equation:

dr

FP S(r)

(where 7 is an arbitrary parameter), they cannot intersect each other, unlike the
geometrooptical rays. This follows from the Picard theorem about the local unique-
ness of the dependence of solutions of ordinary differential systems — with Lip-
schitzian right-hand side — on 1initial conditions. However, the wave-optical rays
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can run quite erratically, as is seen in Fig. 3. This figure also well illustrates how the
far-zone radiation pattern for angles close to zero is built (let us notice that we have
used Egs. (11) to compute the right-hand side of (18), without using asymptotic
approximations for the Hankel functions). An interesting effect is visible, which will
be even more pronounced in our further examples: although the far-zone “main”
maximum (i.e., that for small angles) appears, in the wave-optical-ray picture, al-
ready for the distances from the system which are comparable with the distances
between the wires, the other maxima require considerable redistribution of rays
on the still much larger scale.

TABLE 11

Coordinates of wires are shown which resulted from optimization under the condition
that all the wires are located on the axis of abscissas.

A. Structure with four wires

x(m) | 19.3643 | —9.3807 | -1.5126 | -0.3275 | | | |

B. Structure with eight wires

x(m) | -23.1057 | -11.8038 | -3.9357 | 1.0489 | -0.1379 | ~0.0784 | -0.02399 | -0.0100

Our next optimization involved an elementary partially disordered system.
That is, all the wires have been constrained to lie on the x axis, but their z-coordi-
nates have not been arranged in the crystal-like structure, but rather allowed to
“move” freely to look for the minimum of {. Our Table II and Fig. 4 show the
suboptimal z-coordinates of the wires for n equal to 4 and 8.

05 T T T T T
y (m)
4-wire structure  ©
8-wire structure &
location of the source  ®
or o o o o o oo -
05 1 L 1 L 1
-25 -20 -15 -10 -5 o] 5

x (m)

Fig. 4. Suboptimal locations of wires in structures for which optimization involved
changing only z coordinates of the wires while their y coordinates have been equal to

zero. Systems with 4 and 8 wires are shown. The data have been taken from Table II.

We can see that the found local minimum corresponds to a rather disordered
system. Nevertheless, the directivity, shown in Fig. 5 turns out to be quite con-
siderable, although much worse than that in the case of the crystalline AD of the
next example.
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Fig. 5. Normalized radiation pattern for the system of 4 and 8 wires located according

to Table IT and Fig. 4.

x(m)

Fig. 6. Wave-optical rays for the 8-wires one-dimensional “random” structure.

In Fig. 6 we have plotted corresponding wave-optical rays, but — unlike in
Fig. 3 — this time our rays start from a long and thin ellipse surrounding the
wires. Building-up of the diffraction maximum near ¢ = 0 is again excellently
visible, but considerable rearrangements must evidently happen in far zone since
there are no far-zone maxima near the angle ¢ = 7.

Furthermore, we have assumed that the conducting wires form a photonic
crystal with the length and width of the unit cell given by 2a and 26, and the shift
of the “center of mass” of the crystal with respect to the source denoted by d.
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TABLE III

Coordinates of wires are shown which resulted from opti-
mization under the condition that the wires form a small
crystalline structure with the unit cell length 2a, width 2b,
and the “center of mass” of the crystal located at d.

Parameters of crystal structure

4 wires 16 wires 36 wires
a(m) 2.7377 4.1648 4.1665
b(m) 0.0503 0.1524 0.0567
d(m) 2.8815 15.9225 16.0523

The optimized parameters a, b, d are given in Table 111 for three numbers of wires
to form the crystal — they were equal to 4, 16, and 36. Figure 7 illustrates the
location of wires according to Table III.

y (m) 4-wire "crystal” x
05 F 16-wire "crystal' » |
* * * * 36-wire "crystal" =
location of the source »
. . . . . .
L] » » » » L]
. x W ox ] ] ] .
o+ . E
. X mox . . . ]
L] i L L L L]
. . . . . .
o5 L * * * x i
1 1 1 1 1 1 1
10 0 10 20 30 40 50

Fig. 7. Suboptimal locations of wires in rectangular “crystalline” structures for which
optimization involved changing the size of elementary cell as well as the overall location
of wires with respect to the source of radiation. Systems with 4, 16, and 36 wires are
shown. The data have been taken from Table III.

Figures 8, 9, and 10 provide corresponding radiation patterns. The fact that
the directivity improves when the number of elements becomes larger seems rather
intuitive. In particular, the directivity for the case n = 36 seems to be quite satis-
factory, although we have found it difficult to remove the annoying local minimum
at ¢ = 0. In Fig. 11 we provide the corresponding trajectories of wave-optical rays.
Let us notice that the obvious maximum at ¢ = 7, which disappears for still larger
distances, 1s not an artifact connected with a peculiar choice of the initial condi-
tions for the trajectories, which, as in Fig. 6, start from a highly eccentric ellipse
surrounding the wires.

The following observation is perhaps of some interest. The simulated anneal-
ing routine stmann requires some initial guess as an input. Normally, this initial
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Fig. 8. Normalized radiation pattern for the systems of 4 located according to Table 111
and Fig. 7.
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Fig. 9. Normalized radiation pattern for the systems of 16 located according to Table 111
and Fig. 7.

guess have been made using the random number generator ranluz. However, if
the initial guess contained the positions of wires corresponding to a previously
optimized photonic crystal with the same number of elements, simann has still
been able to find a little bit “better” positions of wires, with slightly improved
directivity, but with the crystalline structure somewhat “spoiled”. But the defects
have been extremely small, the lengths and widths of deformed unit cells have
deviated by no more than 0.01%, and the improvement in our ¢ function has been
very insignificant. Therefore, although the strategy itself, 1.e., first optimize the
location of elements in a crystalline structure, then feed the optimization routine
with their positions and try to find a better one, seems to be advisable, in this
case we have not obtained any substantial changes.
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Fig. 10. Normalized radiation pattern for the systems of 36 located according to Ta-
ble I1T and Fig. 7.

y(m) 20

-20

Fig. 11. Wave-optical rays for the 16-wires “crystalline” structure.

The form of our suboptimal small crystalline structures has suggested that a
waveguide-like structure, empty inside, and located close to the radiation source,
can also provide a useful system to obtain a high directivity. In our final numer-
ical experiments, we have tried to optimize the “width” of the waveguide, the
distance between elements, and the overall location of the waveguide with respect
to the source. Suboptimal location of the elements, for 17 and 31 wires, is shown
in Fig. 12.

In Figs. 13 and 14 we have plotted the radiation patterns for the waveguide-
-like structures with 17 and 31 wires. It is seen that the directivity is at least
comparable with that of the crystal-like systems, but, not surprisingly, we have
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Suboptimal locations of wires in “waveguide” structures for which optimiza-

tion involved changing the width of the waveguide, the distance between the elements

forming its “surface” as well as the overall location of wires with respect to the source

of radiation. Systems with 17, and 31 wires are shown.
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Normalized radiation pattern for the systems of 31 located according to Fig. 12.
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encountered serious difficulties to eliminate narrow side diffraction maxima. These
could not be eliminated even though we have added a penalty function to our
function ¢ in order to minimize also the ratio of heights of side maxima to the
height of the main maximum.

For the system comprising 17 wires we also provide the illustration of how
the far-zone radiation pattern emerges from the wave-optical rays, see Fig. 15.

Fig. 15. Wave-optical rays for the 17-wires “waveguide” structure.

It is to be noticed that it would be very interesting to investigate the fine
structure of radiation inside photonic crystals and waveguide-like systems in the
spirit of [20]. The wave-optical rays (together with the lines of constant amplitude
and of constant phase) are an ideal tool for such an analysis. In particular, the
distribution of stationary points and the structure of separatrices bring about
valuable information on the electromagnetic fields. In this paper we have not
touched these fascinating topics.

4. Final remarks

In this work we have analyzed the possibilities of optimization of radiation
patterns of idealized antennas emitting only E waves, located inside, or in the
vicinity of, artificial dielectrics. Artificial dielectrics considered here have been
assumed to comprise perfectly conducting infinitely thin parallel wires, so that the
propagation problem has been restricted to two dimensions. We have shown that
very high directivity can be achieved for (sub-)optimal positions of conducting
elements provided that they form a photonic crystal or a waveguide-like system,
even if the number of those elements is rather small, of the order of 10. The



Optimization of Directional Antennas . .. 277

half-power beam-width has been as small as 8° for just about 30 wires forming a
crystal. In addition, we have demonstrated that it is also possible to obtain a quite
considerable directivity from partially disordered, or even completely disordered
ADs, although their directional characteristics have been much worse than those
of optimized photonic crystals.

There are some desirable features absent in this research, which we plan to
include in our future work. Firstly, we are going to get rid of the assumption that
the elements are parallel infinitely long wires, and consider full three-dimensional
propagation. Only then our optimization can be compared with the results of
[13-16]. Secondly, the assumption that the elements to form ADs are perfectly
conducting must be relaxed. Thirdly, we have not considered here the problem of
efficiency of antennas. If numerical optimization like that performed here has to
have real applications, the gain must be optimized together with the directivity.
In addition, it 1s also possible to state the optimization problems as follows: try
to find the minimum number of elements and optimal parameters of the crystal,
such that the desired values of directivity and the gain can be achieved. This is
a mixed-integer optimization problem, the numerical solution of which is highly
non-trivial, but conceivable.
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