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Spin related effects in electronic transport through quantum dots, cou-
pled via tunneling barriers to two metallic leads, are discussed from the
point of view of fundamental physics and possible applications in spin elec-
tronics. The effects follow either from long spin relaxation time in the dots or
from spin dependent tunneling through the barriers when the external leads
are ferromagnetic. In the former case large nonequilibrium spin fluctuations
in the dot can be induced by flowing current. These fluctuations modify
transport characteristics, particularly the shape of the Coulomb steps. In
the latter case electric current depends on magnetic configuration of the
system, and tunnel magnetoresistance effect due to magnetization rotation
can occur. Transport properties in the weak coupling regime are described
perturbatively in the first (sequential) and second (cotunneling) orders. In
the strong coupling regime, on the other hand, the equation of motion for
nonequilibrium Green functions is used to calculate electric current at low
temperatures, where the Kondo peak in conductance is formed in the zero
bias regime. In symmetrical systems the Kondo peak is split in the paral-
lel magnetic configuration, whereas no splitting occurs for the antiparallel
alignment. Theoretical results are discussed in view of available experimental
data.
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1. Introduction

More than a decade ago Grinberg et al. [1] discovered antiferromagnetic
interlayer exchange coupling in artificially layered structures consisting of two
3d ferromagnetic metallic films separated by a nonmagnetic metallic spacer. It
turned out later that the sign of the corresponding exchange parameter oscillates
with the spacer thickness and disappears when the thickness exceeds several tens of
angstroms [2]. A direct consequence of the presence of antiferromagnetic interlayer
coupling was the subsequent discovery of the giant magnetoresistance (GMR)
effect [3, 4]. This discovery initiated broad interest in spin polarized transport in
artificial and natural nanoscopic systems.

A typical structure, in which the GMR effect occurs, is a multilayer in which
adjacent ferromagnetic films are coupled antiferromagnetically across a nonmag-
netic spacer, so they have antiparallel magnetizations in zero magnetic field. When
an external magnetic field 1s applied, the magnetizations rotate from antiparallel
configuration to parallel one, and this rotation is associated with a decrease in
electrical resistance of the system (an increase is also possible [5]). The effect was
found for electric current flowing in the film plane [3, 4], as well as for current
flowing perpendicularly to the film plane [6].

To observe the GMR effect one needs to create the antiparallel alignment
of the film magnetizations. In early experiments such an alignment was a conse-
quence of antiferromagnetic interlayer exchange coupling. However, the exchange
coupling is not a necessary condition and its presence is even not advisable from
the application point of view because 1t enhances the saturation field and dimin-
ishes field sensitivity of the effect. Fortunately, the antiparallel alignment can also
be obtained by other means. If, for instance, the two magnetic films in a tri-
layer structure have different coercive fields, then there is a range of magnetic
fields during scanning through the hysteresis loop, where the magnetizations are
antiparallel [7]. A specific example of such structures are spin valves, where one
magnetic film is pinned by exchange anisotropy to an antiferromagnetic substrate,
whereas the other one is magnetically free.

The GMR effect is described quantitatively by the ratio AR/R = (Ry) —
Ri1)/Ryy, where Ry and Ryy are the total resistances of a multilayer in the
antiparallel and parallel magnetic configurations, respectively. A typical value of
this factor is of an order of 0.1 = 1.0. In the case of the GMR effect described
above, all components of a multilayer are metallic. Electrical resistivity of such
structures is therefore typical of metallic systems. However, a similar effect also
occurs when the metallic spacer layer in a trilayer structure is replaced by an
insulating barrier [8, 9]. Vertical transport occurs then owing to electron tunneling
through the barriers. Consequently, a typical conductance is then several orders of
magnitude smaller than for metallic spacers. The corresponding magnetoresistance
effect is known as tunnel magnetorsistance (TMR).
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The TMR effect can exist in simple planar junctions as well as in more
complex ones, e.g., in double-barrier junctions [10]. An example of the latter sys-
tems are junctions with the central electrode (the part between the two barriers,
called an island in the following) being small enough, so that the effects due to
charging of the electrode with single electrons are visible in the corresponding
current—voltage characteristics. In the case of nonmagnetic systems, and when
discreteness of the density of states of the island can be neglected, this leads to
the well-known Coulomb blockade of electric current below a certain threshold
voltage and to characteristic Coulomb steps. These features disappear when the
thermal energy kp7 exceeds the charging energy F.. When the system is in a
blocked state, the Coulomb blockade can be removed by applying a gate voltage
Vg to the central electrode. The system acts then like a transistor, in which elec-
trons are transmitted in a correlated way one by one, and therefore the device
is called single-electron transistor (SET) [11]. The interplay of magnetic proper-
ties of ferromagnetic junctions and charging effects was studied only very recently
[12-14].

Additional features in transport characteristics arise from size quantization of
electron states in the central electrode [15, 16]. When the island is a semiconducting
quantum dot or a single molecule, or an ultra-small metallic particle, separation
between discrete states can be comparable or even larger than the charging energy,
and also much larger than thermal energy. In this paper we will describe just the
interplay of the charging effects, discreteness of the density of states, and magnetic
properties. Accordingly, we consider a quantum dot connected to two external
electrodes which can be magnetic in a general case. We will describe the limit of
weak coupling between the dot and electrodes, when the Coulomb blockade and
other charging phenomena dominate, as well as the strong coupling limit, where
the Kondo effect may be observed at low temperatures.

The spin effects in electronic transport, discussed in this paper, are due to
either a difference in relevant time scales for spin and charge degrees of free-
dom or spin polarization of electric current when the external and/or central
electrodes are ferromagnetic. Generally, one can distinguish three relevant time
scales in electronic transport through ferromagnetic or nonmagnetic quantum dots:
(i) spin-conserving energy relaxation time on the dot 7, (ii) current injection time
1, and (iii) spin-flip relaxation time 7. In real systems 7 is usually the shortest
time scale, 7. < 1072 s, whereas 7y can be in the range of 1072 + 10~% s. On the
other hand, for the current of 1 nA, the injection time is of the order of 1077 s.
Accordingly, one may assume that the shortest time scale in the systems under
consideration is the spin-conserving energy relaxation time, while the longest one
is the spin-flip relaxation time, 75+ > 71 > 7. (slow spin relaxation limit). In other
words, one may assume that after tunneling to the island, the electron relaxes en-
ergetically to the relevant Fermi level before next tunneling processes take place,
whereas electron spin preserves its orientation for a time much longer than the
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time between successive tunneling events (injection time). In the case of magnetic
systems this results in a spin splitting of the steady-state Fermi level of the island.
Apart from this, one may expect large nonequilibrium spin fluctuations on the
island, even if the system 1s entirely nonmagnetic. These large spin fluctuations
may lead to observable effects in electronic transport [17, 18].

In some systems, however, the conditions of slow spin relaxation are not
fulfilled and 75+ becomes of the order of 71 or even shorter. In this so-called fast spin
relaxation limit, the spin effects due to different time scales disappear. However,
the effects due to spin dependent tunneling across the barriers can still occur when
some components of the system are ferromagnetic.

When the quantum dot contains an odd number of electrons, the Kondo
effect in electronic transport through the dot can be observed at low temperatures
[19, 20]. The effect is fundamentally similar to the Kondo effect observed in alloys
with magnetic impurities. However, there is an important difference — the Kondo
effect in alloys gives rise to a minimum in resistivity below the Kondo temperature,
while in the case of transport through quantum dots it gives rise to a minimum in
conductance. Spin polarization of conduction electrons in ferromagnetic electrodes
leads to new features of the Kondo phenomenon [21-23].

In Sect. 2 we discuss spin effects in quantum dots connected to nonmagnetic
leads. Such spin effects follow either from exchange coupling between electrons on
the dot or from a difference between energy and spin relaxation times. In Sect. 3
we consider spin polarized transport through a quantum dot in the sequential
tunneling and cotunneling regimes. Finally, in Sect. 4 we discuss spin polarized
transport through quantum dots in the Kondo regime. Possible applications in
spintronics are discussed in Sect. 5, where also concluding remarks are given.

2. Spin effects in quantum dots coupled to nonmagnetic leads

Exchange interaction between electrons in quantum dots leads to effects
which are similar to those occurring in natural atoms. One of its consequences is
lifting the spin degeneracy of discrete levels. Moreover, in some cases consecutive
discrete levels may become populated following Hund’s rule. Accordingly, the dot
can acquire a stable magnetic moment, similar to the magnetic moment of certain
atoms. Hund’s rule may then lead to spin blockade phenomenon in electronic
transport through the dot. In other words, electrons with one spin orientation
can tunnel from the source electrode to the dot and then from the dot to the
drain electrode, whereas tunneling of electrons with opposite spin orientation is
suppressed by Hund’s rule [24].

There are also other spin effects in electronic transport, which are due to
nonequilibrium spin fluctuations in quantum dots. Such spin fluctuations occur
when spin-flip relaxation time 7y is long compared to other relaxation processes
like the energy relaxation time 7. and the injection time 71. These effects occur
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in the nonlinear current—voltage regime, and when the size effects play a role.
Moreover, they can occur even in the absence of exchange interactions on the dot.
In the following part of this section we will consider in more details the role of
nonequilibrium spin fluctuations in transport processes.

Assume that a quantum dot is connected to two nonmagnetic leads. When
positive bias corresponds to electrons flowing from right to left, then the electric
current I flowing through the dot is determined by the following formula:

IIIFIGZ Z P(NTaNl) {Fr-lz—f(NT’Nl)_Fr_a(NT’Nl)}’ (1)

where —e is the electron charge (¢ > 0), P(Ny, N|) is the probability to have on
the dot Ny electrons with spin | and N electrons with spin |, whereas FT%(NT, N))
is the tunneling probability to (+) and off (-) the dot through the right barrier.
Similar probability may be defined for tunneling through the left barrier (I =
I} = I). In the simplest “orthodox” tunmneling theory, these probabilities can
be calculated from the Fermi golden rule. On the other hand, the probability
P(Ny, N|) can be determined from the relevant master equation, which takes into
account a detailed balance of electrons tunneling to and off the dot [16, 17].

A state of the dot can be characterized either by the numbers Ny and N|,
or equivalently by the numbers N = Ny + N| (charge state) and M = Ny — N|
(magnetic state). When the spin relaxation is slow, large spin fluctuations on the
dot can arise in a nonequilibrium situation (biased system). In Fig. 1 two different
magnetic states are shown schematically assuming the constant level spacing AE.
These different magnetic states correspond to the same charge state. Owing to
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Fig. 1. Two magnetic states of the dot, which correspond to the same charge state.
The state (a) corresponds to short spin-flip relaxation time, whereas the state (b) is

relevant when the spin-flip relaxation time is long.
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the discrete energy structure, a transition from the N to N + 1 charge states can
occur at a bias lower than in the absence of spin fluctuations. This transition in-
volves high-spin states (states corresponding to large values of M). Consequently,
the transition between different charge states is smoother and the Coulomb steps
in the current—voltage characteristics become less pronounced. The effect is rel-
evant as long as the energy of thermal fluctuations i1s lower than the energy of
nonequilibrium spin fluctuations. Thus, even if the discrete states are not resolved
(kT 2 AFE), the spin fluctuations can lead to observable effects.

The role of nonequilibrium spin fluctuations in electronic transport through
quantum dots is shown schematically in Fig. 2, where positions of the conductance
peaks (current steps) are indicated in the low-temperature limit, kg7 < AFE. The
regions marked with N, N + 1, and N + 2 are the Coulomb blockade ones and
correspond to N, N + 1, and N + 2 electrons on the dot, respectively. In the fast
spin relaxation limit, the solid lines determine the well-known Coulomb block-
ade diamond structure. The regions denoted as SETT (single electron tunneling
transport) and DETT (double electron tunneling transport) correspond to the
cases where one and two excess electrons can occur in the dot, respectively, when
appropriate gate and transport voltages are applied. The dotted lines indicate
standard resonance peaks following from the discrete structure. When spin relax-
ation is slow, there are new resonance peaks indicated by the dashed lines which
start inside the SETT diamond when a particular spin excitation appears. Due
to nonequilibrium spin fluctuations, the double electron tunneling transport can
occur already within the SETT diamond region (the regions marked in gray in

Fig. 2).

Fig. 2. The scheme of conductance peaks in the V —V; plane for a symmetric junction;
Ec/AE = 4.5 and kT < AFE. Solid lines determine the Coulomb blockade diamond
structure indicating also the onset of single electron tunneling transport (SETT) and
double electron tunneling transport (DETT) in the absence of nonequilibrium spin fluc-
tuations. Dotted lines are usual effects related to the offset in transport of new discrete
energy levels. Dashed and dotted-dashed lines indicate the onset of the consecutive

charge states due to particular spin excitations (as indicated).
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Recently, Fujisawa et al. [18] obtained experimental results on small vertical
QDs at low temperatures, which confirm the role of nonequilibrium spin fluctua-
tions in electronic transport. One should also note that the borders between SETT
and DETT diamonds observed in earlier experiments have features indicating the
role of nonequilibrium spin fluctuations, too.

3. Spin polarized transport through quantum dots in the sequential
tunneling and cotunneling regimes

When the quantum dot is attached to ferromagnetic electrodes, the lead-
ing spin effects originate from spin polarization of injected electrons. If the spin
relaxation time on the dot is sufficiently long, spin dependent tunneling through
the barriers gives rise to the TMR effect. The relevant experiments have been
performed with carbon nanotubes (CNTs) of finite length used as the central elec-
trode [25]. When CNT is not too long, it behaves like a quantum dot with discrete
energy levels and with a finite number of electrons. Moreover, the correspond-
ing spin relaxation time can be relatively long. Indeed, spin polarized transport
through CNT attached to two Co electrodes revealed long spin coherence length,
which gave rise to large TMR effect [25].

To describe the main features of spin polarized electronic transport through
quantum dots, let us consider the limiting case of a single-level dot. Electron
correlations on the dot can be then taken into account in the Hubbard form and
the Hamiltonian of the whole system can be written as

H=>" carocyCaro + _ cadhd, + Udldyd]d,

a=lr ko o
+ Z Z(Vakaclkada + Vigodhears), (2)
a=lr ko

where the first term on the right hand side describes the two electrodes in the non-
interacting quasi-particle approximation, the second and third terms describe the
dot with €4 being the energy of the discrete level and U denoting the electron cor-
relation parameter. The last term takes into account tunneling processes between
the dot and the leads, with the spin dependent coupling parameters V,;,. The
energy level ¢4 includes the electrostatic part, eq = €3 — el., where €] is the level
energy at zero bias, and U, is the electrostatic potential of the dot. Similarly, the
single-electron energy of the leads includes the corresponding electrostatic energy,
too.

Strength of the coupling between electrodes and the dot can be described by
Too(E) =273, |Vako|?0(E — €ako), for a = 1,1. In the following we consider only
colinear magnetic configurations, i.e., the parallel and antiparallel orientations of
magnetic moments of the leads. When the tunneling rates are small (small values of
I'vyo(F)), transport characteristics can be calculated within the master equation
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technique, with the tunneling rates calculated in the lowest order from the Fermi
golden rule. However, such a description does not properly take into account the
electron correlations on the dot. It also is not applicable in the strong tunneling
regime and at low temperatures, where many body effects become important and
lead to the Kondo effect. However, when transport is dominated by sequential
tunneling processes, such a description gives reasonable results [26, 27].

The description based on sequential tunneling breaks down in the Coulomb
blockade regime, where sequential tunneling is suppressed by the Coulomb en-
ergy. Electric transport in this regime is still possible via higher-order tunneling
processes. The dominant processes are the ones of the second order, known also
as cotunneling, where two tunneling events through the barriers occur simultane-
ously, so the charge state of the dot is not changed. For weak coupling between
the dot and electrodes, the sequential and cotunneling processes can be calculated
perturbatively, and in a simplified description one can use Born approximation
to calculate the appropriate tunneling rates. However, the Born approximation is
valid only at small bias voltage. When the bias is close to the threshold voltage,
one has to use a more accurate description, e.g., by summing a certain class of
higher order terms to remove divergences. The most suitable method seems to be
the real time diagrammatic technique, in which the density matrix is expanded
into a series with respect to tunneling Hamiltonian, and each tunneling event cor-
responds to a certain class of diagrams [28]. This technique allows a direct control
of tunneling events taken into considerations.

Let us assume that the discrete level of the dot is below the Fermi level of
the leads in equilibrium and the correlation parameter U is sufficiently large so
the dot in equilibrium is occupied by a single electron only. In the limit of small
bias, the sequential tunneling processes are exponentially suppressed and only the
following elastic cotunneling processes can occur: (i) an electron with spin opposite
to that on the dot enters the dot and then one electron leaves the dot, and (ii) an
electron leaves the dot and another electron enters the dot. When the spin state
of the dot is not changed, such elastic tunneling processes are coherent. When,
however, the spin state is changed, the tunneling processes destroy coherence. In
any case, one can have one-barrier and/or two-barrier cotunneling processes. The
former processes contribute directly to electric current. The latter ones, on the
other hand, do not transport electron charge, so they do not contribute directly to
the flowing current. However, they can contribute indirectly by modifying magnetic
state of the dot. In addition, there are also other second order tunneling processes
which effectively lead to renormalization of the sequential tunneling. Thus, the
total second order contribution to tunneling current can be positive as well as
negative.

In Fig. 3 we show the TMR in the Coulumb blockade regime, when only
sequential tunneling processes are taken into account and also when cotunneling
events are included. It is evident that cotunneling processes enhance the TMR
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Fig. 3. TMR as a function of bias voltage, calculated for a symmetrical system in the
sequential tunneling limit (dashed line) and with the cotunneling processes included
(solid line). The parameters are: kgT = 2I", ¢ = —10I", U = 30T, polarization of the
leads P =0.5and I'= I+ [_5, with ['s = 1o = [}s in the parallel configuration.

effect in the Coulomb blockade regime. Such an enhancement was also observed
in the case of electron tunneling through small metallic magnetic grains. Another
interesting effect is the suppression of TMR obtained in the sequential tunneling
limit close to the resonance. This follows from suppression of electric current by
renormalization of the sequential tunneling due to the second order tunneling
processes.

4. Kondo effect

The Kondo phenomenon in electronic transport through quantum dots
strongly coupled to metallic nonmagnetic leads was predicted theoretically long
time ago [19]. The prediction was recently confirmed experimentally [20]. There is
some difference between the Kondo effect in quantum dots and that observed in
alloys with magnetic impurities. In the latter case there is a minimum in resistiv-
ity at a certain temperature (known as the Kondo temperature), whereas in the
former one there is a minimum in conductance. However, the physical mechanism
leading to the anomalies is similar in both cases and is based on the formation of
Kondo peak in the density of states at the Fermi level. This Kondo peak enhances
transmission through quantum dots leading to almost perfect transmission at zero
temperature, i.e., to the conductance 2¢2/h.

Several theoretical techniques have been developed in the past decade to
study the Kondo phenomenon in quantum dots. The limit of linear response (limit
of zero bias voltage) can be treated by equilibrium methods. However, the problem
becomes more complex when a bias voltage is applied, which drives the system
out of equilibrium. It was shown that the Kondo peak becomes then split and the
two peaks are formed at the Fermi levels of both leads attached to the dot [29].



174 J. Barnas et al.

It is only very recently when the problem of the Kondo effect in quantum
dots attached to ferromagnetic leads was addressed [21-23]. There are no relevant
experimental data yet, but the existing theoretical results clearly indicate that the
Kondo effect can be observed, although the predictions differ in certain aspects.
The key difference concerns splitting of the Kondo peak in the density of states
at equilibrium. Such a splitting was predicted in Ref. [22], where the Kondo effect
in the large U limit was analyzed within the equation of motion method, and also
by some scaling considerations.

Gy 0.40
0.354 F
0.30 F
U=500 r,=012 T, =008
B=0
0251 P total
----spinup
------ spin down
0.20- o . -
N /’: N
VAR A AN
0-15__. '.\‘ ----- __". oL

-0.10  -0.05 O.E)O 0.65 0.10

eV
Fig. 4. Differential conductance in the Kondo regime, calculated for zero magnetic
field B and for the parallel configuration. The energy parameters are given in dimension-
less units (the unit is 1/50 of the electron band width). Apart from this, I\, = 1y = It¢
and 4y = 1) = I3

One of the methods applicable to systems out of equilibrium is the nonequi-
librium Green function technique. To calculate density of states and electric current
one needs both retarded and lesser (correlation) Green functions. In Ref. [23] the
equation of motion was used to calculate both Green functions on equal footing,
i.e., within the same approximation scheme. Assuming the model Hamiltonian
given by Eq. (2), the following formula for electric current was derived there:

r- ey / dE Lo (E) Lo (E) + Tro(E) 10 (E)
2 ) 2w T (E) + [0 (E)
XG0 (E) = G (ENLN(E) = [:(E)], (3)
which is valid for collinear magnetic configurations. Here, fo(E) is the Fermi distri-

bution function in the electrode «, Grg(?) is retarded (advanced) Green’s function
of the dot, and I',,(F) are certain effective coupling parameters which are closely
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related to I'ao(F) [23]. The Green functions depend on the occupation number
ny = {dfd,), which can be determined from the formula

n :/d_EflU(E)fl(E)—l-fw(E)fr(E)
T Do(B)+ w(B)

[GI(;'O'(E) - Gga (E)] :

All information on the Kondo anomaly in the density of states is contained
in the Green functions. In the case of nonmagnetic systems, the Kondo peak in the
density of states gives rise to a Kondo peak in the differential conductance Gyig,
which occurs in the zero bias regime. When the dot 1s symmetrically coupled to two
ferromagnetic leads, a splitting of the Kondo peak in the density of states occurs
in the parallel configuration. This, in turn, leads to splitting of the Kondo peak in
the differential conductance. This is shown in Fig. 4, where Ggig 1s presented as a
function of the bias voltage. It is worth noting that by applying a magnetic field
one can compensate the splitting and restore the full strong coupling Kondo effect.
In the case of antiparallel configuration, there is no splitting of the Kondo peak in
the density of states and no splitting of the zero-bias anomaly in the differential
conductance. The situation is then similar to what one expects in quantum dots
coupled to nonmagnetic leads. This behavior of differential conductance leads to
negative TMR in the small bias range.

5. Possible applications and concluding remarks

For practical applications in spin electronics, the devices based on quantum
dots should operate at temperatures which are much higher than the Kondo tem-
perature [30]. One kind of possible applications of quantum dots are spin filters. We
already mentioned before that quantum dots with energy states obeying Hund’s
rule may be used as spin filters. From similar reasons one can use magnetic quan-
tum dots as spin filters, too. When the spin splitting of the dot level is sufficiently
large, one can reach the spin blockade regime for electronic transport, similar to
the spin blockade due to Hund’s rule.

Another interesting application of quantum dots is a spin diode. In such
a device, a quantum dot transmits electric current for one bias polarization and
blocks the current for the opposite bias. An example of such a system is a quantum
dot coupled to two ferromagnetic electrodes, one of them being half metallic with
almost full spin polarization of electron states at the Fermi level.

Since the devices should operate at high temperatures, the formal description
of the transport characteristics may be simplified. In the framework of the equation
of motion method one can limit oneself to the Hartree—Fock approximation when
deriving the Green functions. In that case the formula for electric current becomes
simplified and has the form of Eq. (3), but with fcw(E) replaced by I'yo(E) [31, 32].

Let us consider qualitatively the case where the right electrode is ferromag-
netic (it can be also nonmagnetic), whereas the left one is half-metallic. Assume
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that the discrete level € is well below the Fermi level of the electrodes at equilib-
rium, and ¢ + U is slightly above the Fermi level. When ¢} + U is much larger
than the thermal energy, the discrete level is always occupied with a single elec-
tron in equilibrium. For positive bias the current starts to flow when eq+U crosses
the Fermi level of the source electrode. The situation is significantly different for
negative bias. When eq 4+ U crosses the Fermi level of the source electrode, only
a small current flows due to cotunneling processes, while sequential tunneling is
suppressed. This is because an electron with spin parallel to the spin of electrons
in the half-metallic source electrode blocks sequential tunneling processes.

In conclusion, one may state that quantum dots offer new physics and also
possibilities of new devices for applications in nanoelectronics and spin electronics.
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