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A method of linear equations is proposed allowing a reduction of a
physical problem of determination of energy, entropy, or magnetisation for
the systems with frozen disorder to a mathematical problem of solving a set
of linear equations. Apart from an exact method for determination of energy
and entropy, a type of the mean field approach is presented, which permits
a summation over series representing entropy. Moreover, it was established
that magnetisation can appear only when the antiferromagnetic integrals
occur at the zero probability.
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1. Introduction

Results of this paper have already been presented at the conference “Physics
of Magnetism’02” [1].

From among the spin glass models only those of infinite range have proved
useful for analytical studies. The information we have on spin glass has been
mostly obtained from computer simulations allowing a determination of physical
properties of increasingly less idealised models with increasing accuracy. The first
simulations were of the Monte Carlo type, at present they are of the type called
exact calculations. In these simulations performed for small systems with randomly
chosen exchange integrals the following thermodynamical quantities are calculated:
energy, entropy, and magnetisation. In the next step new signs of the exchange
integrals are randomly chosen and the calculations are repeated. As a result of
the sampling the mean values and errors of their determination are obtained, see
Hartmann [2].

(3)
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The main reason why the analytical calculations have been replaced by com-
puter simulations is the lack of calculation methods for the systems with frozen
disorder. Although physics has developed a wide spectrum of methods for deter-
mination of the average values of some quantities over temperature, they cannot
be applied for a frozen system of exchange integrals. The reason 1s that for such a
system there is no quantity which would reach an extreme value at the equilibrium
state and would correspond to free energy or entropy for the mean taken over spin
states.

The paper is directly related to the works of Derida et al. [3] and Dress
et al. [4], in which the thermodynamical quantities in the ground state were de-
termined from the recurrent relations. The description of the model (Sec. 2) is
followed by presentation of the method reducing the problem of determination of
energy to the task of solving a set of linear equations (Sec. 3). When compared
with the hitherto available methods it is definitely the most effective. Section 4
presents entropy expressed in the form of a series, apart from a direct summation
of the series, a type of the mean field approximation has been applied to obtain a
compact formula for entropy. Section b is devoted to analysis of the possibility of
appearance of magnetisation as a function of the concentration of antiferromag-
netic integrals. The conclusions are given in Sec. 6.

2. Description of the model

Let us consider the Ising model described by the Hamiltonian

H==> TiSS;, (1)
i

where (4j) numbers pairs of neighbouring spins, J;; = J with a probability 1 — p
and J;; = —J with a probability p. We will consider a square lattice wrapped
around tubes of infinite lengths. If the signs of the exchange integrals are dis-
tributed at random, there are two types of squares: unfrustrated ones of an even
number of antiferromagnetic bonds and frustrated ones with an odd number of
antiferromagnetic bonds. When the width of the tube is equal to a single square,
the vertical (orthogonal to the tube) ferromagnetic bonds can be assigned to the
|+) state, while the vertical antiferromagnetic bonds can be assigned to the |—)
state. The periodicity of the structure implies that the horizontal bonds in the
square are equal. If we assume that the probabilities of the vertical bonds are in-
cluded in the probabilities of the squares occurring on the left of such a bond, then
the probability that a square is unfrustrated and all its bonds are ferromagnetic
is (1 — p)?. The change sign of the exchange integrals of horizontal bonds leads
to the probability of p(1 — p).The other unfrustrated squares correspond to the
case of vertical antiferromagnetic bonds and occur with the probabilities (1 — p)p
and p®. Finally the matrix for the unfrustrated square takes the form
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1—p)? 1- 0
" [ (1-p)* +p(1—p) 2 )
0 p(l—p)+p
and for the frustrated square can be written as
0 p(1—p) +p?
f= l , ( ) ) (3)
(I—=p)*+p(1-p) 0

By prl we will denote the probability of occurrence of the vertical bond and
prl = [(1 —p) p]. When we consider a square, which can be preceded on the right
by any frustrated and unfrustrated square, then the state of the square on the

1
right is described by a vector Jel = l . The above quantities permit writing

the probabilities of the selected square being unfrustrated as prl - u - Jel and
being frustrated as prl - f- Jel.

In order to describe the ground state, let us resort to the concept of the
frustrating string introduced by Toulouse [5] and Kirkpatrick [6]. The string joins
the centres of frustrated squares in pairs cutting the unsatisfied bonds of elevated
energy. The search for the ground state energy is equivalent to the search for a
frustrating string of the minimum length whose number of possible positions equals
the degeneracy. The tube of a one-square width has some artificial properties be-
cause different squares can be joined by vertical bonds only and only such vertical
bonds can be unsatisfied. Therefore, we shall consider the tube of a width of two
squares.

3. The energy

For a tube of a two-bond width there are four matrices of probabilities of
finding a pair of squares. Let us denote by ww, uf, fu, and ff the matrices of
probabilities corresponding to the situations of two unfrustrated squares, the upper
one unfrustrated and the lower frustrated, the upper one frustrated and the lower
unfrustrated, and both frustrated. The base of the matrices is determined by the

vertical exchange integrals and can be written as | ff, fa, af, aa|, where f and a
stand for the ferromagnetic and antiferromagnetic exchange integrals. As before,
the probability of the bond on the left of the square has been included in the

probability of the preceding square. The probability of the occurrence of these
bonds is described by the row vector pr of the form

pr=[(1-p)° p(1-p) p(1 —p) p*] . (4)
The energy of the pair of squares depends on whether they are frustrated or not
and on the state of the frustrating string reaching them let us say from the right.
The state (——) corresponds to the situation without the string, the states (+—)
and (—+) correspond to the situation when the string leaves the upper and lower
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square, respectively. We neglect the state (+4) corresponding to the occurrence of
two unsatisfied bonds across the tube, but this case can always, without a change
in energy, be replaced by the state whose unsatisfied bond separates the upper
and lower square. The probability normalisation condition leads to

P(——)+ P(+-) + P(—+) = Je, (5)
where Je is the four-dimensional column vector of unitary terms.

When we do not know anything about the squares preceding the pair of
squares considered, so when the state is described by the vector Je, then pr-uu-Je,
pr-uf-Je, pr-fu-Je, and pr- ff - Je are the probabilities of occurrence of
the following pairs of squares: both unfrustrated, upper unfrustrated and lower
frustrated, upper frustrated and lower unfrustrated, and both frustrated.

The choice of the states permits an introduction of the Markov chain. The
state (——) acting on a pair of unfrustrated squares gives (——), which we write
ut - P(——) — P(——). From here the matrix multiplication is denoted by a dot,
provided that the matrices are not given in the explicit form. The same state
acting on a pair of frustrated squares gives: ff- P(——) — P(——). When one of
the squares is frustrated we have fu- P(——) — P(+—) and uf- P(——) — P(—+).
These relations are illustrated in Fig. 1. Writing the analogous relations for P(4+—)
and P(—+) we arrive at the set of equations

P(—) = (ff+ wu) - P(—=) + (fu+ uf) - P(+=) + (uf + fu) - P(—+),
P(+—)=fu-P(—)+uu- P(+—) + ff- P(—+),
P(—+)=uf - P(—)+ ff- P(+—) + uu - P(—+). (6)

The periodic conditions and the system symmetries lead to the identity of the
coordinates of these vectors

P(—=)(2) = P(——)(3) =0,  P(+-)(1) = P(+-)(4) =0,
P(—+)() = P(=+)(4) =0,  P(+-)(2) = P(=+)(3),
P(+-)(3) = P(=+)(2). (7)

Taking advantage of the normalisation condition (5), the vectors of probabilities

0
0

can be written as

1 0 0
e e I E U I P (GRS I 0
1 0 0

Putting these vectors into one of Eq. (6), we get
2p — p* — 4p° 4 4p*
z= : (9)
1—2p+ 10p2 — 16p3 + 8p*

The energy per spin can be written as
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? = Lpr {[-duu — 2uf— 2fu—2ff] - P(——)
+[—2uu — 2uf — 4fu— 2ff] - P(+-)
+[—2uu — duf — 2fu— 2ff] - P(—+)}. (10)
The coefficients preceding the probability matrices are the energies of the
pair of squares assuming that the energy of the vertical bonds is included to
that of the squares on their right. This convention becomes necessary when we
consider a complete set of the states leading to degeneration. Equation (10) can
be rewritten as
E —4(1 — 4p + 15p% — 26p3 + 23p* — 12p° + 4p°) (11)
J 2 —4p + 20p? — 32p3 + 16p*
and introducing z = 1 — 2p, we get Eq. (17) from the paper of Derrida et al. [3].

(——) + wu(——)

T (=) <~ (=)

(+—=) +— Su(—>)

x| () (=)

Fig. 1. The states obtained from the state (——) for four types of square pairs. The
frustrated squares marked by crosses are the sources of frustrated string intersecting the

unsatisfied bonds.

Analogous calculations were performed for tubes of the width of 3 and
4 bonds. The number of states that must be considered increases to 8 and 9,
and the number of variables increases to 6 and 13, respectively. The results are
in the form of fractions, whose numerator and denominator are polynomials of
the 22nd and 19th degree, and 38th and 34th degree for the tube width of 3 and
4 squares, respectively. The form of the results in detail is given in Appendix A.
The expression for the energy of a tube of three bonds in width has been given by
Derrida and Vanniemenus and by putting p = (1—=2)/2, the equation for e3/J from
Appendix A is transformed into Eq. (12) from Ref. [7]. Figure 1 in [1] presents the
energy per site as a function of the concentration of antiferromagnetic integrals
for three different widths of the tube. For a tube of 3 squares in width (the broken
line) the energy ceases to be invariant with the replacement p — (1 — p), as the
vertical bonds form triangles breaking this symmetry.
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4. Entropy

When considering entropy we cannot restrict our analysis to the states
(==), (+-), (—=4), but we have to take into account all possible locations of
the frustrating string. Thus, we have to consider the following four probabil-
ities: Pi(——), Pa(+—)(—+,42), Ps(—+)(+—,+2), Ps(——)(++,+2). Apart
from P;(——), these are the probabilities of alternative states. Pao(+—)(—+, +2)
is the probability of the state with the frustrating string leaving the upper square
or the lower square, but the second possibility corresponds to the energy by 2.J
higher than the first one. For P3(—+)(4+—,42) the sequence of the possibilities
because of the string location has been changed. P4(——)(++, +2) corresponds to
the state when the frustrating string does not leave the squares or when there are
two strings leaving the upper and the lower square, the probability of the latter
case 18 by 2J greater. Similarly as above, we write a set of equations determining
the probabilities of these four states

Py =wu- P14 fu- Py + uf- Ps+ uu- Py,
Pz:fu~P1—|—uu~P2—|—ﬁ'~P3—|—fu~P4,
Ps =uf - P+ ff - Py +uu- Py 4 uf- Py,

As follows from the set of equations, the states Pi(——), Pa(+—)(—+,+2),
P3(—+)(+—,+2) and P4(——)(++, +2) can be also defined as the states obtained
from the state without the frustrating string after the transformation of the fol-
lowing pairs of squares: uu, fu, uf, and ff. The set of Eqs. (12) is equivalent to
the matrix of probabilities of transitions between the pair of states, denoted by :

g | Tooue O Jel (13)

I ouf fu Jf
Now, let us define the degeneracy related to the transitions between two
states joined by a pair of squares. As the degeneracy depends on which of the
alternative states are realised, only when the initial and final state is the state 1,
the degeneracy is a number, and in the other cases it will be expressed as a matrix.
For example

(Py(—)lylPu(--)) = 1],

(Pa(=4)(+= +2)[y[Pr(——)) = l ; ] ,
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2 1

The locations of the frustrating string corresponding to these three cases are

(Po(+—=)(—+, +2)|y| Pa(+—)(—+, +2)) = l L0 ] .

shown in Fig. 2. In the same way we obtain the matrix of degeneracy denoted

by ¥:
[v] [ro] Jro] 1]
1 10 10 10
2] |2 1] o] |2 1]
y=| (1] [1 o] [1 o] [1 o] (14)
2] o 1] |2 1] [2 1]
o] [2 1] [2 1] [2 1]
1] [t o] [1to] [1 0]

The system is divided into blocks, defined as the smallest elements bringing
additive contributions to entropy. Thus, a block starts and ends with the state 1.
The entropy per spin is obtained by multiplying the block entropy by the proba-
bility of its occurrence, and summing up the result over all blocks. Thus, we can
write

o0 4 4

%: %ZZ ...Zpr~<1|w|i1>'<i1|ﬂ3|i2>~~

n=14¢,=2 =2

(inla|l) - PyIn[(1]ylir) - (ir]yliz) - (inly|1)]. (15)

(B lP(--) & ﬂw
N
%
(B(—H) 1 2plA() & % @

=
SR

Fig. 2. Possible positions of the frustrating string for the cases described in the text.

(BHE) 2B BRE) (- +2) o
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Figure 3 presents the entropy per spin versus the concentration of antifer-
romagnetic integrals p, taking into account the blocks of the lengths from 10 to
18 bonds. For p = 0.5, for blocks up to 18 bonds long we get the entropy per site
S/k = 0.1427. Because the blocks longer than 18 bonds still bring significant con-
tributions to entropy, it was found that these contributions can be approximated
by the quadratic equation in the logarithmic coordinates. The validity of this ap-
proximation is illustrated in Fig. 4. The contributions to the entropy as a function
of the block length are marked by circles and the corresponding approximate values

02 T T T T 002 T T T
She Sk
g
0015 o%a —
° g
O
=]
001 |- & -
g
u}
=}
ooos B =] -
=]
o a
°s
o P R T IR R o L I . I . I .
0 01 02 03 04 505 0 5 10 15 20
Fig. 3 Fig. 4

Fig. 3. The entropy per spin versus the concentration of the antiferromagnetic integrals
p for the blocks up to 10 bonds long — broken line, for the blocks up to 18 bonds long
— solid line.

Fig. 4. The contributions coming from blocks to entropy per spin as a function of the

blocks length — circles, and the corresponding approximate values — squares.

2
d(S/kydp

Fig. 5. The derivative of entropy per spin as a function of the concentration of the

antiferromagnetic integrals p.
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are marked by squares. On the basis of this approximation, the contributions from
19th to 50th and to 500th bonds were summed up, getting the entropy per spin
of 0.1513%k and 0.1515k. Figure b presents the concentration p dependence of the
derivative of entropy obtained on the basis of the symbolic expression derived for
the 11-bond long blocks. It reaches a maximum for the concentration p ~ 0.06. For
the concentrations higher than p & 0.26 the derivative of the entropy is negative.

Knowing that the series (15) is slowly convergent for the majority of con-
centrations, it would be interesting to find a probability of each of the alternative
states and determine the entropy from them. Although such a procedure leads
to exact expressions for any measurable quantity (e.g. energy or magnetisation),
it gives only approximate expression for entropy. The measurable quantities are
expressed through one- and two-spin correlation functions and their derivatives.
These quantities are linear with respect to both the probability of the states of the
system at a fixed distribution of admixed bonds and the probability of exchange
integrals. Because of these properties, determination of the mean values of such
quantities can be performed according to the procedure of determination of the
mean internal energy. For a certain distribution of the exchange integrals we find
the energy of a pair of squares and multiply it by the probability of occurrence
of this pair of squares. The procedure is repeated for different distributions of
exchange integrals and the obtained sum of the corresponding energies multiplied
by the appropriate probabilities is the searched mean value. As the entropy is
not a measurable quantity, the smallest element of the system for which it can
be defined is not a pair of squares but a block, which in general is built of more
squares and its length is not limited. We can follow another procedure, in which
the entropy of a pair of spins is determined, if the pair of spins directly proceed-
ing the above-considered pair, occurs in a certain fixed state. In this way we get
the entropy value for a pair of squares for the assumed exchange integrals. This
method is related to an error following from the impossibility of separation of the
spin probability from the probability of exchange integrals which lead to the spin
probability. Although a change in the sequence of taking the average and taking
the logarithm i1s mathematically justified only for small logarithm arguments, this
approximation is eliminated for measurable quantities, so if a measurable quantity
1s expressed by entropy in this approximation, it must be exact.

Now, we shall describe the way of determining the probabilities of alterna-
tive states. Let us note that the degeneration matrices introduced determine the
possible degenerations, which realise after a block is defined. For instance

(Llyl2) - (2[y]2) - (2|y[2) - (2[y|1)

IR

so the state Pa(+—)(—+,+2) can be always replaced by the state (+—), and
the excited state (—4,+2) is never realised; thus the above product could be
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replaced by

ke

After this replacement, each matrix presents the actual degeneration of a pair of
sites. The situation is similar for the other alternative states. They can occur in the
normal form (alternative states) or in the reduced form — when only the state of
a lower energy can be realised. Consequently, instead of the four states originally
considered we have seven. In order to find out which of the alternative states is
realised in the system, each of the alternative states is replaced by two new ones,
and thus the total number of the states increases to ten. Finally, because of the
need to distinguish the spin states this number is doubled, as each of the states is
replaced by two states: with the spin up and down. Further, because of the need
to determine the state of the upper spin, each of the matrices of probabilities 1s
replaced by a pair of matrices: one for the ferromagnetic upper bond and one for
the antiferromagnetic upper bond. Assuming that the upper bond is satisfied, they
correspond to the case of no change or a change in the upper spin respectively.
For example, for a pair of unfrustrated squares we have uwun and uwuc. Because of
the above changes the matrix of degeneration (2|y|2) is replaced by the matrices
of the probabilities of transitions between the states

1 0 0 0 01 0 0
01 0 0 1 0 0 O

(2|yn|2) = o (2lyel2) = , (18)
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

when the states are reduced and

/3 0 0 0 0 1/3 0 0
0 1/3 0 0 /3 0 0 0

(2|yn|2) = o (2lyel2) = , (19)
/3 1/3 1 0 /3 1/3 0 1
/3 1/3 0 1 /3 1/3 1 0

when the states are normal. The bases of the matrices are the states:
+=)(1), (+9)(), (=+,+2)(1), (=+,4+2)(]). Figure 6 presents the position of
the frustrating string and spins of the bond distinguished for the non-zero elements
of the matrices. We should define now when the states are reduced and when nor-
mal. If any of the states 2, 3, or 4 is followed by the state 4 and not by 1 occurring
closer to this state on the left, then this state is normal; if state 1 1s closer to
the state considered then it is reduced. In order to write down the equations for
the probability of states, we shall introduce the following abbreviations for these
probabilities. For the normal states
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Py(+-)(1) = P21,
Py(—+,+2)(]) = P23,
—+)(1) = P31,

reduced case

Qr21, ) =1«

@2 =16

f ¥

Qlyel2)(1,2)=1& E

¥ ¢

Qlyel2)(2, ) =1& Eﬁ

Fig. 6.

non-zero matrix elements (2|yn|2), (2|yc|2), for the reduced and normal states.

(1) = P22,

++2)(1) =

(1) = P32,

P42

-)

Pa(—

—+)
Py(+—,+2)(1) =
—=)

Pa(+

normal case

Qlyn2(1,1) =3 &

Qlyn2)2,2) = ; &

Q23,1 =3 &

@G, =1 e

Qlyn2)4,2) = 3 &

Q24,4 =1«

@lyel2)(1,2) =% &

@y, =3

2lyel2)(3, 1) = &

Qly2)3,2) =3 &

(@lyel2)(3,4) = 1 ¢

=
++2)(1) =

s

@lye,29 =1 & %
(@lyel2)(4,3) = 16

The positions of the frustrating string and spins of the upper bonds for the

P24,

P34,

P44,

4 4

@lyml2)(3,3) = m%

¥ ¢

@i, 1) =1 @E

1
2lyel2)(4,1) =5 & %

13
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for the reduced states
Py(+-)(1) = P25, Py(+-)(1) = P26, Ps(—+)(1) = P35,
P5(—+)(1) = P36, Py(——)(1) = P45, Pi(—-)(]) = P46,
and for state 1, which can be either reduced or normal
P (——)(1)= P11 and Pi(——)(|) = P12.

Ten of the twenty equations (only for the spin down) for the probabilities of
states are given below.

P11 = wun - P11 4+ uuc - P12 + fun - P25 + fuc- P26 + ufn - P35
+ufe- P36 + uun - P45 + uuc - P46,

P21 = Lfun- P11+ Lfuc- P12 + luun - P21 + Luuc- P22 + ffn - P31
+ffc- P32 + Lfun- P41 + Lfuc- P42,

P23 = Lfun- P11+ Lfuc- P11 + Lfun - P12 + Lfuc- P12 4 Lluun- P21
+iuuc- P21 + fuun - P22 4 luuc- P22 + uun - P23 + uuc - P24
+ffn - P33 + ffc- P34+ Lfun - P41 + Lfuc- P41+ Lfun - P42
+1ifuc- P42 + fun - P43 + fuc - P44,

P25 = fun - P11 + fuc - P12 + uun - P25 + uuc- P26 + ffn - P35
+ffc - P36 + fun - P45 + fuc - P46,

P31 = Lufn- P11+ Ltufc- P12 + ffn - P21 + ffc- P22 + luun - P31
+iuuc- P32+ fufn- P41+ Lufc- P42,

P33 = Ltufn- P11+ Ltufc- P11 + lufn - P12 + Lufc- P12 4 ffn- P23
+ffc- P24 4 Luun- P31 + luuc- P31+ fuun- P32 4 luuc- P32
+uun - P33 + uuc - P34+ Lufn - P41 + lufc- P41 + Lufn - P42
+iufc- P42 + ufn - P43 + ufc - P44,

P35 = ufn- P11 + ufc- P12 + ffn- P25 + ffc - P26 + uun - P35
+uuc - P36 + ufn - P45 + ufc - P46,

P41 = Lffn - P11 + Lffe- P11+ Lffn - P12 4 Lffc- P12 + lufn- P21
+iufc- P21 + lufn- P22 4 Lufc- P22 4 ufn - P23 + ufc- P24
+ifun- P31+ Lfuc- P31+ Lfun- P32+ Lfuc- P32+ fun- P33
+fuc- P34+ 1ffn- P41 + Lffc- P41 + Llffn - P42 + Lffc- P42
+ffn - P43 + ffc - P44,
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P43 = Lffn- P11 + Lffc- P12 + Lufn - P21 + lufc- P22+ Lfun- P31
+ifuc- P32+ 1ffn- P41 + Lffc . P42,

P45 = Lffn - P11 + Lffc- P11+ Lffn - P12 4 Lffc- P12 + lufn- P21
+iufc- P21+ lufn- P22 4 Lufc- P22 4 ufn - P23 + ufc- P24
+1ifun- P31+ Lfuc- P31+ Lfun- P32+ Lfuc- P32+ fun- P33
+fuc- P34+ 1ffn- P41 + Lffc- P41 + Lffn - P42 + Lffc- P42
+ffn - P43 + ffc - P44. (20)

As a state can be normal or reduced, we have the following two normalisation
conditions:

P11+ P12 + P21 + P22 4 P23 + P24 + P31 + P32
+ P33 + P34+ P41 + P42 + P43 + P44 = Je,
P11 + P12 + P25 + P26 + P35 + P36 + P45 + P46 = Je. (21)

In these conditions and due to the symmetries, the set (20) is reduced to a
scalar system with 8 variables. The solutions to these equations are given in
Appendix B, which also gives the probabilities of the states. To solve the set
(20) two normalisation conditions are needed.

We would like to express this set in such a way to give the information
whether the state is normal or reduced and to be able to give only one normali-
sation condition for all states. In order to do this we shall introduce the matrices
a4l, a42, a43, a44 of the probabilities of transitions from the first, second, third,
and fourth state to the fourth state

a4l = (4|z|1) + r- s 11,

I 0
ad2 =7-s- , a43=17r-s- ,
0 I

a44 = (4|z|4) + r- s - t4, (22)

where

= [(4]2[2), (4]23)] = [wf, ful,
k

S I P R
= l (3][2) <3|w|3>] Z[ ff uu] ’

k=0

l (2]2|1) ]:[fu] t4:[<2|w|4>]:[fu].
(3]2|1) uf | (3]2/4) uf

Matrices I and 0 have their usual meaning of the identity and zero matrix,
respectively. Replacing the final state 4 by 1 we get the matrices all, al2, al3,
al4. In a similar way we define the matrices of conditional probabilities. For
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example a41ff is the matrix of transition probabilities from the state 1 to 4, if the
state 1 1s followed by the matrix ff, so a41ff = I. Due to so defined probabilities
the set (20) can be rewritten without the need to distinguish the normal and
reduced parts. For example, the eighth equation from the set (20) takes the form

a44 - P41 = a44 - (La41ff- ffn - P11 + La4lff - ffc- P11
+ia4lff ffn P12 4 Ladlff- ffc - P12 + la42uf - ufn - P21
+1a42uf- ufc- P21 4 Lad2uf- ufn - P22 4 Lad42uf- ufc- P22
+a42uf - ufn - P23 + a42uf- ufc- P24 + La43fu- fun - P31
+1a43fu- fuc- P31+ Lad43fu- fun- P32 4 La43fu - fuc- P32
+a43fu - fun - P33 + a43fu - fuc- P34 + Lad4ff - ffn - P41
+1a44ff - ffc- P41 4 Lad4ff- ffn - P42 + lad4ff - ffc - P42

+ad4ff - ffn - P43 + a44ff - fuc- P44). (23)

The sum of the left hand side of the equations of the modified set gives the
normalisation condition of the state probabilities.

pr-[P11+ P12 + a42 - (P21 + P22 + P23 + P24) + al12 - (P25 + P26)
+a43 - (P31 + P32+ P33 + P34) + al3 - (P35 + P36)

+ad4 - (P41 + PA2 + P43 + P44) + al4 - (P45 4 P46)| = 1. (24)

The equations of this modified set permit expressing the entropy in the unperturbed
but approximate form. The approximation is a consequence of a change in the
sequence of taking average and taking logarithm, and as above, it is eliminated
for observables.

A normal state with two ferromagnetic bonds and with the upper and bottom
spin directed upwards can be either the first coordinate of the vector P11 and
the first coordinate of the vector P41. The state is denoted {1 (1,4) where the
first coordinate is the number of the state vector coordinate and the second one
determines the state of the bond on the left hand side and when the latter is 4, the
state 1s normal, while when it is 1, the state is reduced. As we wish to determine
the entropy of the state after the transformation, thus, the probability that after
the appearance of ffn squares the system is in the state with ferromagnetic bonds
and spins directed upwards or antiferromagnetic bonds with the spins up and
down, is denoted as P(11,0,0,1], ffn 11 (1,4)). The first four coordinates of this
probability are the states of the pair of spins when the exchange integrals are
ff, fa, af, and aa. The fifth variable describes the type of the pair of squares
and the state of the pair of spins transformed. The set of equations analogous to
Eq. (23) permits writing
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P(IT,0,0,1L ffn 11 (1,4)) = pr

P11(1) P41(1)
1 0 1 0
La44 - a4lff- ffn 0 + Lad4 - adlff- ffn 0 . (25)
0 0

Expressions for P(]],0,0,[1, ffn 11 (1,4)) and P(1],0,0,171, ffn 11 (1,4)) are

identical. These expressions represent all the possible transitions from the state
with both spins upwards, if the ffn squares occur. Thus, the total probability is

P(ffn 11 (1,4)) = P(11,0,0, 11, ffn 11 (1, 4))
+P(L1 0,0, 11, ffn 11 (1,4)) + P(11,0,0, 11, ffn 11 (1,4)). (26)

Now, we are able to find the conditional probability of occurrence of any
of these states, e.g. that with the spins up for the ferromagnetic bonds, if any
of the three states has occurred. For this exemplary state P(11,0,0,1], ffn 11
(1,4)/P(ffn 11 (1,4)). The contribution to entropy coming from this state can
be written as

P(11,0,0, 11 £fn 17 (1,4)) In[P(11,0,0, 11, ffn 11 (1,4))/P(ffn 17 (1,4))]
and the other two contributions are found analogously. Then we also sum up the
contributions for the situation when the state after the transformation is reduced.
Similar calculations are performed for the other vector coordinates (signs of the
exchange integrals), other directions of spins and possible matrices of probabilities
of pairs of squares. Because of the approximation used for determination of entropy,
only its linear term is correct, although the results are close to those obtained
for blocks up to 18 bonds long: S(0.5)/k = 0.142104, the maximum entropy of
0.147344 occurs at p = 0.312, and the maximum of the entropy derivative is 0.8437
and occurs at p = 0.0525. The approximation is removed if we forbid summation
of the probabilities of the states of the same spin state but preceded by different
sequences of frustrated and unfrustrated states in the exemplary sequences made of
P11 and P44. However, this leads to a necessity of considering a greater number
of squares. If the ban on the summation of the probabilities is realised so that
the only probabilities considered are P11 and P12, and so the possible blocks
start and end with these states, we obtain the series described above. As follows
from the above considerations, apart from the definition of blocks as the smallest
elements of the system bringing additive contributions to the system entropy, they
can be also defined as the smallest elements of the system with the fixed spin state
at the ends and the fixed probability of the state occurrence. A comparison of
the values of entropy per site obtained in this approximation and by tabulation of
series (15) for blocks of up to 18 squares in length, is given in Fig. 2 in [1].
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5. Magnetisation

5.1. Strictly one-dimensional case

In this section we shall review the possible methods of determination of mag-
netisation and give the definitions of magnetisation. In the absence of a magnetic
field, the magnetisation is determined from the relation

(s)? = lim (sgs,) (27)

n—oo

and because

<505n> = th(ﬁjgyl)th(ﬁjlyz) .. ~th(6¢]n—1,n) (28)
and in the ground state th(8J) = 1 with the probability 1 — p and th(3J) = —1
with the probability p, the mean value of the spin correlations taken over the dis-
tribution of the exchange integrals (sgs,) = (1 — 2p)”, which implies {s) = 0 for
p # 0. If the exchange integrals (except the ferromagnetic and antiferromagnetic
ones) can take zero with a non-zero probability, then irrespective of the concen-
tration of ferromagnetic bonds we get (s) = 0. In the presence of a magnetic field
B, when we calculate (s) at first taking the limit for T — 0 and then for B — 0,
we get (s) # 0, see Doman [8]. Probably for infinite systems these two definitions
are equivalent.

Let us denote by P(n,1) the probability of getting the total spin of the
system as n and the last spin directed upwards. Then, we shall make a Markov
chain by addition of another bond. This Markov chain can be written as

{P(n+1,T)H(1—p)P(n,T)+pP( )
Pn—=1,1) —=pP(n, 1)+ (1 =p)P(n,|),
where the sign of substitution «— becomes =, when it is the only way of getting a
probability on the left hand side. For n = 0, Eq. (29) gives

{ P(1,1) — (L = p)P(0, 1) + pP(0, 1),
P(1,1) — pP(0,1) + (1 — p)P(0, ]),

where the last substitution was made with the inversion of the system in order to

n, |
29
"l (29)

(30)

preserve non-negative magnetisation. Equation (30) implies

but P(0,1) = 0 as otherwise the probability with negative magnetisation must
have been non-zero, so

P, 1) = PO, ]). (32)

Let us introduce the notation

U=> Pn1), V=> Pl (33)
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then
U+V=1 U=V=/{s). (34)
Summing up (29) for n =1,2,..., we get

{ U= P(L1) =1 =p)U +plV = PO, ])]. (35)
V=pU+(1=pIV-P0])
but since P(1,1) = P(0, |), each of the equations is equivalent to

p(s) = (1 =p)P(0, ]). (36)

Since P(0,]) = pP(1,1) + (1 — p)P(1,]), thus when p # 1 we have
P(1,7) = P(1,]), and similarly P(2,1) = (1 — p)P(L,1) + pP(1,]) gives
P2,1)=P1,1).

In this way for ¢ > 1, p # 1 we get

PG, 1) =P, 1), PGE+1,1)=P>1) (37)
These expressions with the normalisation condition give P(0,]) = 0 for p # 1, so
always

p(s) = 0. (38)
The same equation can be obtained as a result of averaging over the last but one
spin
(s) =(1L=pU+pU —(1-p)[V—-P0O, DI+ 1 -p)PO])-
=U—-V+2(1-p)P0,]) = (s) + 2p(s). (39)
Investigation of a total spin of a system in such a way to guarantee that it is
positive is very difficult and therefore it is more convenient to determine two-spin
correlations. In order to do this we shall denote by P;(1) and P;(]) the probabilities

that the spin of the i-th node is directed upwards and downwards, respectively.
These probabilities are determined as

{ Pia(1) = (1= p)P(D) +pPi(]).
Pipa(l) = pBi(1) + (1 = p)Bi(l).

The total spin of the system can be positive or negative, so despite the
condition P;(T) + P;(|) = 1, the expression P;(]) — P;i(]) is not necessarily equal
to (s;). The relations (40) can be rewritten in the matrix form

(40)

Pua(D) ] _ [ l-p » ][ A (1)
Piyi(l) p l—p || R

We can determine the probabilities over n bonds
Po(1) _ 1 1+ (1=2p)» 1—(1-2p)" Po(1) (42)
Pa(1) 2 1-(1=2p)" 14+(1=2p)" || P(}) |’
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thus
(s0sn) = Po(1)Pa(1) — Po(1) Pu(l) = Po(L) Pu(T) + Po(1) Pr(l)
= (1 =2p)"[Po(1)Po(1) — Po(1)Po(l) = Po(1) Po(1) + Po(1) Po(1)]
= (1—=2p)"[Po(1) — Po(1))*. (43)

In order for the magnetisation to be non-zero, apart from the symmetry breaking,
it is necessary that the non-zero limit of the expression (1 — 2p)" existed for
n — 00, which happens when p = 0. Another way of finding p at which spontaneous
magnetisation can appear is to look for the stationary solutions of (42). Both
solutions are then identical and we get

s[1—=(1=2p)"1P(1) = 3[1 - (1 = 2p)"|P(1). (44)

The equation is fulfilled when P(1) = P(]) or when 1[1 — (1 — 2p)"] = 0,
which happens for any n for p = 0. This example suggests that the operation of
bond addition must not be many times repeated and the spontaneous symmetry
breaking takes place when the set of Egs. (40) has, apart from the symmetric
solutions P(T) = P(|), also unsymmetrical solutions P(T)—P(]) = z # 0, provided
that the stationary condition is fulfilled. In the assumed notation each of Eqs. (40)
is equivalent to pz = 0.

5.2. The tube

From among the above presented methods of determination of the concen-
tration p at which the spontaneous magnetisation can appear, the last is the most
effective and has been applied to a two-bond wide tube. In order to find the prob-
abilities P11, ..., P46, we introduced the variables #[i],i = 1,...,14, which by
the normalisation conditions were reduced to 8 independent variables. Because we
have to distinguish between the cases with the spin upwards and downwards, the
number of the variables is doubled. Therefore, #[1] is replaced by z[lu] or z[1d].
Similarly as in the one-dimensional case we introduce z[1] satisfying the relation
z[lu] = 2[1]+2[1], getting the variables z[i],i = 1,. .., 14. Expressing the probabil-
ity vectors P11, ..., P46 in the variables z[i] and substituting them into Eq. (20)
we get a uniform and scalar set of equations with 14 unknowns z[7]. In order for
this set to have non-zero solutions (apart from zero ones) the matrix made of its
coefficients should be singular. In this way we arrive at

p(1—2p+6p* — 4p3)2(162 — 702p + 2934p? — 6873p° + 14010p*

—20258p° + 23520p° — 25071p7 + 25596p° — 32424p°

+35328p'" — 15260p'" — 15312p'? + 29040p*> — 21888p**

+9408p*® — 2304p'° + 256p*7) = 0. (45)
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In the range p € (0,1} it has only one real solution p = 0, therefore, only for
p = 0, so when the antiferromagnetic integrals occur with the zero probability, the
magnetisation can be non-zero. When the calculations are performed not for (20)
but for its modified form (23), then the determinant of Eq. (45) is enlarged by the
factor

p12(1 _ p)12(1 _ 2p)12
(1 —4p+ 16p* — 40p3 4 60p* — 48p> 4 16p©)12
and the occurrence of non-zero magnetisation will be also possible for p = 1/2 and
p=1.

(46)

6. Conclusions

The states defining the position of the frustrating string were defined. The
probabilities of these states together with the probabilities of the frustrated and
unfrustrated squares permit determination of the ground state energy. In order to
determine entropy and magnetisation, the above states were split into the normal
and reduced ones, with the distinguished spin directed either up or down. The
probabilities of the two types of states (corresponding to energy or entropy) can
be found from a set of linear equations. On the basis of the solutions of this set, the
expressions for energy and entropy can be given. The entropy can be expressed in
the form of a series of blocks, defined as the smallest elements of the system bring-
ing additive contributions to entropy. The need to express entropy in the form of
a series is a consequence of its nonlinearity. Assuming the approximation in which
entropy 1s treated as a measurable quantity, it was possible to sum up the series.
Apart from determination of the energy and entropy, the probabilities of the states
permitted identification of the concentration range in which magnetisation must
be zero. Despite the fact that numerous computer simulations have estimated the
critical value of concentration p for two-dimensional lattice as p. = 0.1, our results
indicate that at a finite width of the tube spontaneous magnetisation would occur
only for p = 0. Analysis of the behaviour of the entropy derivative provides the
information on the concentration of antiferromagnetic integrals at which a phase
transition would occur on a two-dimensional square lattice. We get a similar result
from a search for the conditions in which the relation describing the spontaneous
magnetisation becomes singular, it happens in the complex plane for such concen-
trations p that Rep € (0.06,0.17). As a continuation, it would be interesting to
apply this method to systems with non-zero magnetic field and non-zero temper-
ature.

Appendix A

The energy per a site for tubes three bonds €3 or four bonds e4 wide can be
expressed as
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e3  N(3)

J ~ D(3)’

N(3) = 2(3 — 18p + 129p% — 522p® + 1899p* — 5325p° 4 12074p°
—22682p" 4 35807p° — 47991p° + 58407p'° — 72747p'! + 101616p'2
—153434p"3 + 221980p'* — 277440p"° + 284832p"° — 237376p'7
+160512p*® — 86272p'° 4 34304p>° — 8704p>! + 1024p>?),

D(3) = 3(—1 4 4p — 34p* 4+ 120p® — 435p* + 1176p° — 2514p°

+4354p7 — 6221p° + 7278p° — 7929p'° 4 10304p' " — 16344p*>

+25772p3 — 35296p™* + 38480p'° — 30848p'6 + 16704p'"

—5376p'® + 768p'?),
ed  N(4)

7~ DAY
N(4) = —2850816 + 213811222 — 12505602* — 13607362°

—7509762% 4 454002'° 4 387976212 + 2575172
—111046621° 4 1936362'® + 368386220 — 202591272
—1439242%* 4 109416226 — 7252275 — 2726523
+121182% — 246825* 4 234255 — 45258

D(4) = 64(32768 — 245762% + 4864z* + 132162° 4 87042°
—16722%0 — 5080212 — 22912* 4 9594216 — 1337218
—345220 4 1438272 4 135222 — 910226 — 12278
+2452%0 — 98232 4 15231),

z=1-=2p.
Appendix B

The probabilities of the states occurrence can be expressed as
z[1] 0
0 z[3]
pl11] = p[12] = ,  pl21] =pl|22] = ,
[11] = p[12] 0 [21] = p[22] o]

z[2] 0
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[0 ] [0
B B z[5] B B z[11]
p[23] = p[24] = o6 | p[25] = p[26] = ef12] |
L 0] L 0
[0 ] [0
_ _ | =4 _ _ | 6]
p[31] = p[32] = e | p[33] = p[34] = e |
L 0 L 0
[0 ] [ 2[7]
B B z[12] B B 0
p[35] = p[36] = L1 | p[41] = p[42] = o |
L 0 L =[8]
z[9] [ 2[13]
[43] = p[44] = 0 [45] = p[46] = 0
p[43] = p[44] = 0 ,  pl45] = p[46] = 0 :
| 2[10] | | x[14]

with the following normalisation conditions for the non-reduced part:

1]+ 2[7]+ 2[9] = L, x[2] + x[8] + «[10] = L,

2[3] + x[4] + 2[5] + «[6] = 3,
while for the reduced part:
1]+ z[13] = 1, r[2]+ x[14] = L, r[11] 4+ z[12] = L.
Solving Eq. (20) with respect to ®[1], 2[2], [3], «[4], #[5], «[7], x[8], #[11] we get

2[1] = (1 dp+ 11p* — 12p° + 4p),

D1
P 2 3
Q= z[1l|= =—(2—p — 4 4
x[2] = 2[11] DQ( p—4p° +4p°),
z[3] = 13)—1;(—6 + 8p + 4p? — 5p3 — 26p* + 46p° — 32p° + 8p7),
z[4] = i(—3 + 12p — 28p? + 28p> — 5p* — 26p° + 46p° — 32p” + 8p°),

D4
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z[5] = Di5(—36 1 3p 4 60p? — 278p3 + 1364pt — 2827p° + 2808p°

—1036p7 — 1224p® + 2588p° — 2336p'0 + 1216p* — 384p'2 + 64p'3),

2[7] = —%(36 + 21p — 232p* 4+ 1074p” — 4042p* + 9337p° — 14104p°

+14924p” — 11120p° + 6012p° — 2912p'° 4 1472p't — 512p1? + 64p'3),

1—
z[8] = D—Sp(—18 + 48p — 144p* — 72p” + 905p* — 3987p° + 10708p°

—16964p” + 16244p® — 9028p° + 2208p*® + 320p' — 320p'? + 64p'3),
D1 = D2 =2—4p+ 20p® — 32p° + 16p*,
D3 = D4 = —54 4 36p — 246p? + 268p> + 478p* — 1416p° 4+ 1704p°

—1248p7 + 552p° — 160p° + 32p'°,
D5 = D7 = D8 = 2(1 —2p+ 10p? — 16p> + 8p*)(—27 + 18p — 123p? + 134p>

+239p* — 708p° + 852p° — 624p” + 276p° — 80p° + 16p'7).
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