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Based on the series expansion formalism, an analytical approach is pro-
posed to evaluate the total cross-sections induced by electron impact excita-
tion. As an illustration, an analytical expression of the total cross-section of
the double excitation of helium atom by electron impact is obtained for the
2p% *P and 2p3p ! P transitions within the framework of the distorted wave
Born approximation. The available experimental data are well reproduced
by the obtained expression of the total cross-section which is function of the
only parameter of the incident electron energy. Comparisons are also made
with numerical calculations.

PACS numbers: 31.15.—p, 02.70.—¢

1. Introduction

In many applications the cross-sections are used as input data in the form of
tables of sparsely distributed values or given in a limited range [1]. In electron—atom
collisions phenomena, these quantities play a central role for the understanding of
the physical structure of atoms. Several methods have been proposed to treat this
process numerically over the past three decades [2-5]. When the compared results
are in agreement with the data then the used methods are considered as powerful
and reliable. However, when the data are not satisfactorily described, one usually
tries to include corrections or to improve the employed numerical methods before
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introducing different corrections to improve the description of the cross-sections.
There are many sources of uncertainties in the evaluation of scattering amplitude.
Among them, the approximate method adopted for calculation, the inaccurate
input wave functions describing the target, the treatment of the radial wave equa-
tions, and the singularity problems.

In this paper we propose an analytical approach for evaluating the differential
cross-section without resorting to extensive numerical approximate calculations.
Our purpose is to obtain an analytical representation of the T-matrix element
describing the excitation of atoms from the ground state. The aim is, on the one
hand, to avoid the uncertainties related to the use of the numerical methods and
divergence problems and, on the other hand, to obtain an analytical representation
of the cross-sections which may be required in analytical form in more complicated
calculations [1]. To illustrate the proposed approach, we consider the 2p? 3P and
2p3p 1 P transitions corresponding to the electron-impact double excitation of the
helium atom from its ground state.

This paper is organized as follows. In Sec. 2 an analytical solution of the
Schrodinger equation is constructed using the Frobenius series expansion. The
analytical representation of the cross-section is obtained in Sec. 3. The results are
presented and discussed in Sec. 4.

2. Theoretical framework

The T-matrix element for the electron impact excitation of an N-electron
target atom is given (in atomic units) by [6]:

1

Ty = — o
f 27
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where yF(0) and v (0) are the distorted wave functions of the electron in the
Xi Xf

incident and exit channels, respectively, and 0,1,2,..., N refer to position vectors
ro,7,...,T"N:
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+ {
=/—— E k,r)P(k 2
X (’I‘) \/;krlm(il) Ar Xl( ,7“) l( ,7“), ( )

¥, and ¥ are the antisymmetrized initial and final atomic wave functions, respec-
tively, and V is interaction potential between the projectile electron and the target
atom with a charge Z:

N
Z 1
V=-—+4 —, 3
To ZZ:; 70 ( )

where r;g 1s the distance between the bound electron 7 and the incident electron
located at 5. The antisymmetrization operator A:
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1 N
A=——1|1- Pio |,
v (-xn)
where Pjg is the exchanges electron operator. Neglecting the exchange and polar-
ization effects, the distorting potential Uy) in the incident (exit) channel can be

written as Uy = Vﬂ?t where

A4 Rnl(r’)
rstat - _Z Nn A /2d / 4
Yicr) (r) r + ; 4 max(r, ') e (4)

is the standard Hartree potential. NV,,; is the number of electrons in the considered
orbital and Rp;(r) — the radial atomic wave function. The radial distorted waves
Xi1(k, r) are solution of the Schrodinger equation

d?  I(l+1

2 % — 2Ui(s)(r) + ’“if)] xi(kigry, ) = 0 (5)
with the boundary conditions

xi(k,0)=0 and xi(k,7)rooo = %sin (kr — %T—I— 61) , (6)

0; being the phase shift of the I-th partial waves. The differential cross-section for
the inelastic process can be written as

= TP, (7
The Ty matrix elements are derived from (1). The total cross-section ¢ can be
obtained by averaging over initial spin states, summing over final spin states and
integrating over all scattering angles. Our main task is to derive an analytical
form of the Ti¢ matrix elements given in Eqgs. (1) and (7). At the first stage, an
analytical form of the radial distorted waves x;(k,r) in (5) can be obtained using
Frobenius series expansion. The latter have been successfully applied to solve the
eigenvalue problem for the Coulombic model potential [7].

Let us consider the following differential homogeneous equation:

2y Dy =0 )

r — g (x — xg)?

y//(l‘) +

with a regular singular point at © = xg. P(x) and @(z) can be expanded as the
Taylor series about xq:

P(z) = palz—20)", Qz)= qnle—z0)". (9)

Hence, a solution of the differential equation (8) can be written as a Frobenius
series

yi(z) = an(x — zo)"*, (10)

n=0
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where « is an indicial exponent to be determined from the following relations:

Po(a)an =0, (11a)
n—1
Po(a)an +Z[(a+k)pn—k+Qn—k] ap =0, (11b)
k=0
Pp(a) = (a+n)* + (po — )a + qo. (11c¢)
Since ag # 0, it follows that:
Po(a) = a? + (po — Da+ g0 = 0. (12)

If &7 and g are the roots of Py(«) with @y — g = N, where N is an integer, then
Eq. (8) has a second linearly independent solution

oQ

ya(x) = Z en(® — 20)*2™™ — [a), + ap In(2)] (x — xg)* ™" (13)
n=0
with the following recurrence relations:
day,

an () = 5= s (14a)
n—1

Pn(al)an +Z[(a1 +k)pn—k+er—k] ap = 0; n ;é Oa (14b)
=

Pn(a21)cn +Z[(a2+k)pn—k+er—k] Cr = 0; n;& OaNa (14C)
k:

N-1 ’

(s + k)pn—k + an—k] cr = Pylar)ao(ar), (14d)
k=0

cog and ey are defined by the boundary conditions and ag is determined by relation
(14d). Finally, the analytical solution of (8) is

y(r) = Z {cn(x —x9)®t" —[a], + a, In(2) + a,] (z — xo)al‘l'”} . (15)
n=0
Applying the above procedure to Eq. (5), we can write
X7 (k,r)+ @Xl(k,r) =0. (16)
Comparing with Eq. (8) we have
- . 1d"Q
(n=0, Q) Zg owith g = (17)
The indicial equation (12) gives
Pyla)=a?’—a—I1(l+1)=0, (18)

yielding
Oé1:l+1, Ozz:—l. (19)
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In our case, a1 —ay = 2]+ 1 is an integer. The appropriate corresponding distorted
wave function x;(k,r) is of the form (15). The coefficients ag, co, an, @), ¢, and
en are evaluated using the recurrence relations (14) and taking into account (6).

3. The analytical representation of the cross-section
for the 2p? 3P and 2p3p ' P transitions of helium atom

The method developed above i1s applied to evaluate the double excitation
cross-section of helium. The parity unfavored longer lived states [8, 9] states
2p® 3P and 2p3p 'P are considered. An analytical form of the matrix element
given by Eq. (1) can be derived using symmetrized hydrogenic wave functions
Uim (7) and taking into account relations (2), (3) and (4). The distorted wave
function x;(k, r), solution of Eq. (5), is taken in the form of the Frobenius series
given by (15) under the boundary conditions (6). By comparing with the corre-
sponding numerical solution of (15), it turns out that the analytical solution is
sufficiently accurate for the first four terms in the series (15). In Table, several
values of the numerical solution of Eq. (5) and the analytical one with respec-
tively two, three, and four terms, are displayed for purpose of comparison. We can
see that analytical solutions with two and three terms are not convenient, while

TABLE

Values of numerical and analytical solution of differential equation
(5), respectively noted u(r) and pu(r) with 2, 3, and 4 terms for
incident electron energy Ei = 60 eV, with respect to the position r.

r [A] Numerical Analytical Abs [u(r) — pu(r)]
solution u(r) | solution pu(r)

2 terms | 0.5008 0.00866 —0.01072 0.01938
0.8339 0.11800 —0.02985 0.14790
1.1670 0.51330 0.04526 0.46800
1.5000 1.11300 0.47370 0.63950
1.8330 1.294 1.70400 0.40980

3 terms | 0.5008 0.00866 —0.08741 0.09607
0.8339 0.11800 —0.01725 0.13530
1.1670 0.51330 0.49200 0.02125
1.5000 1.11300 1.29600 0.18280
1.8330 1.29400 1.06000 0.23360

4 terms | 0.5008 0.00866 0.01171 0.00305
0.8339 0.11800 0.12090 0.00286
1.1670 0.51330 0.48990 0.02339
1.5000 1.11300 1.13700 0.02411
1.8330 1.29400 1.28000 0.01383
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with four terms the agreement i1s good. Frobenius expansions are called conver-
gent series, obviously, the results are more accurate by using more terms in the
expansion. In the studied transitions results were sufficiently convergent with at
least four terms. Hence, the expansion has been truncated to the fourth term just
to illustrate the proposed method with a minimum number of terms. Formula (14)
enables to deduce other terms to be used in the expansion if more accuracy is
required. The phase shifts § appearing in conditions (6), are calculated using the
well known results of scattering quantum theory in the first-order approximation
and including the asymptotic region solution. The interaction potential is of short
range in the considered problem. The asymptotic region is then reached even for
short distances. Frobenius solutions are used around zero, i.e., at short distances
and the use of phase shifts can then be justified in this case. Once the functions
Xi(k,r) are completely defined in the form of a Frobenius series, the analytic ex-
pression of the matrix elements Tjs and then the differential cross-section defined
by relation (7) are obtained performing spatial integration and taking the initial
direction of the free electron as reference for the scattering angle. The derived
analytical function depends on the unique parameter which is the electron impact
energy.
The 1s? 1S — 2p? 3P transition is described by the following relations:

Lpi(l, 2) = Lploo(’l‘l)wloo(’l‘z), (20)
1
ve(1,2) = 5 > (UmyImall, M)Wy, (r1)Pa1m, (72), (21)
kg 9
o= 3k_ |Tig|~d£2. (22)
Integrating over scattering angle 6 = (ki, k) gives
= ——(L1,)? 23
o k?kf( 1 2) ) ( )

where I; and I, are defined by

4 4 4
/
L = E Up41Cn — E Ap 4G, — § 6n+4ana
n=0 n=0 n=0
4 4 4

L= (20n-2—¢n)en — D _(240n41 — Ensa)al, — O (24841 — 6n)an.

n=0 n=0 n=0

Here, a4, B, and w, are given by

an=T(n+1), By=TI(n+1v0,n+1), (24a)

2 9 n+i—1
=Y vis (S) I'n+i—1), n>2, (24b)

=1

g = 380.41, &; =50.81,
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4 9 n4i41 9
by = vai (S) I'in+i+1) [— In (S) +900,n+i+1)|, (24c)
i=1

where v(n, z) is the polygamma function defined by v(n,z) = d"¥(z)/dz" with
U(z) = I'"(2)/I'(2); I'(z) being the usual gamma function. In our case, the coef-
ficients v; are given by

vy = 10125, vV = 27, Vg = 36, V3 = 24, Vg = 0.

In the case of the 1s* 'S — 2p3p ' P transition, we have

Wj(l, 2) = WIOO(Tl)W10O(T2)a (25)
1
W (1,2) = ﬁm;w(lmllmzHM}
X [T91my (1) P31mz (12) + Porm, (71)P31m, (12)] - (26)
The total cross-section obtained is
kf 2 1 2
= — Ti|*df2 = —— (L1 I, — J1J5)7, 27
o k‘i/|f| kig;kf(lz 1J2) (27)

where

4 4 4
!
I = Z Qpt1Cn — Z Opyaly, — Z Brtatn,
0 n=0 n=0

4 4 4
L= (T20m-2+ An)en — O _(T20m41 + Anga)aly — O (728041 + X)an,
n=0

n=0 n=0

4 4 4
!
J1= Z PnCn — an+3an - Zun+4an,
n=0 n=0 n=0

4 4 4
Ja = 2(240%—2 —&n)Cn — 2(24an+3 - €”+3)a;l o Z<246ﬂ+1 = bn)an
n=0 n=0 n=0
with
I 1
po= =200 +2), g = I = )y 0,4 1) - 1), (28)

2 9 n4+1+4
M= D wag <?) I(n+i+1)

« [_m (;)—1—7(0,71—1—1'—1—1)], n>2, (28D)
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Ag =306.32, A = —177.76,

5 9 n4+1+4 5
Xn =D wiy (5) I'(n+147) [— In (5) +9(0,n+1+49)|. (28¢)
i=1

In this case the coefficients w; are given by

wg =72, w; =-96, wy=-—64 ws=28.44, ws=9.48.

4. Results and discussions

Analytical representation of the total cross-section have been obtained for
2p% 3P and 2p3p ! P excitations of helium without resorting to numerical approx-
imate calculations or introducing adjustable parameters. In Fig. 1, the calculated
total cross-section for the 2p? 3P excitation from the ground state is displayed
from threshold up to 140 V. The results obtained by using Eq. (23) are compared
with experimental data [10] and with the results given by the distorted wave po-
larized orbital (DWPQO) model [11]. Tt is seen that the present results are in good
agreement with the data. The near-threshold behavior and the maximum of the
total cross-section as a function of impact electron energy are well reproduced.
Near the threshold region the DWPO results are somewhat shifted. However, the
position of the respective maxima are about the same in magnitude. As expected,
at higher energies all the results approach the same asymptotic limit.

140
Electron impact energy (eV)

Fig. 1. Total cross-section for 2p* ° P excitation of He atom by electron impact. Solid
curve — present results, cross points — experimental results [10], up triangles points —

DWPO results [11].
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Fig. 2. Total cross-section for 2p3p ! P excitation of He by electron impact. Solid curve

— present results, cross points — BO theory results [12].

Figure 2 shows the total cross-section obtained in the proposed approach
for the 2p3p ' P excitation of He-atom with an incident electron energy ranging
from threshold up to 110 eV (asymptotic region). Our results are compared with
those of the Born-Oppenheimer (BO) theory [12] with hydrogenic orbital wave
functions. It is seen that results obtained from Eq. (26) and those of BO theory
are very close to each other. The peak values are about the same in magnitude
and location and the behavior is similar for both approaches in almost the entire
energy region. To our knowledge there is no data for this transition.

Comparing all results among themselves, it appears that an analytical treat-
ment of such problems can be carried out before any definite conclusion regard-
ing the different corrections than can be made to improve the description of the
cross-sections. The proposed approach allows to diminish the discrepancies related
to the sources of uncertainties. As mentioned above, the analytical solution of the
total cross-section has been obtained using four terms in the series (15) represent-
ing the radial distorted wave. Obviously, high accuracy results can be obtained by
using more terms of the considered expansion.

In conclusion, we have shown that the total cross-section of the electron
impact double excitation can be obtained analytically in the framework of the
distorted wave approximation. Two specific transitions of helium were considered.
The used procedure based on the Frobenius series expansion, can be extended to
other similar excitations of atoms. The analytical results obtained for the total
cross-sections depend on the unique parameter, that is the electron impact energy.
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