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In the present paper we calculate the exchange interaction between two
manganese ions in [V-VI semiconductors with the rocksalt structure. The
method of calculations is based on the fourth order perturbation theory with
respect to hybridization between band states and localized d orbitals of Mn
ions. This hybridization is described by three Harrison integrals: Vpao, Vpar,
and V.qo. The band states of IV-VI semiconductor are obtained from the
semiempirical tight binding model built from s and p orbitals of cations
and anions. The resulting exchange term in the Hamiltonian is of the form
—szmyz Ji; 81 5’?, however nondiagonal terms of the exchange integral
tensor J;»; are very small. The dependence of J;; on the Mn—Mn distance
is non-monotonic. We also discuss the influence of the local crystal deforma-
tions on the exchange integral.

PACS numbers: 71.70.Gm, 75.30.Hx

The exchange interaction between magnetic 1ons has been studied more ex-
tensively in II-VI semimagnetic semiconductors (SMSC) which crystallize in the
zinc-blende structure than in the IV-VI SMSC possessing the rocksalt structure.
According to the model by Larson et al., based on the sp—d hybridization, the ex-
change integral in the II-VI SMSC should decrease monotonously with increasing
distance between Mn ions [1]. However, more recent experimental and theoreti-
cal results indicated that in Zn-based II-VI SMSC the exchange integral between
fourth neighbours may be larger than between third neighbours [2, 3].

The nearest neighbour exchange interaction in IV-VI semiconductors has
been considered by Gérska and Anderson [4]. Their calculations were based on
the Anderson superexchange mechanism between Mn ions via intervening anions’
orbitals [5]. The distance dependence of the Mn—Mn exchange integral in TV-VI

(659)



660 A. Lusakowski, M. Gorska

SMSC has been calculated by Liu and Bastard [6], Dugaev and Litvinov (DL) [7],
and the temperature corrections to DL results have been analysed by Rusin [8].

In the present paper we analyse the same problem. However, our approach
differs from the previous ones in two aspects. First, in Ref. [6] the band energy
spectra have been assumed to be parabolic in the vicinity of L point of the Brillouin
zone (BZ) and in Refs. [7] and [8] they have been calculated within the framework
of the Dimmock model [9]. Such models are appropriate for description of states
in the vicinities of L points of BZ only. In our calculations we use semiempirical
tight binding model proposed for IV-VI semiconductors by Kriechbaum et al. [10].
In this model the band states are built from the p and s orbitals of cations and
anions with the interactions with first and second neighbours taken into account.
Such an approach enables us to calculate the energies and the wave functions for
the band states not only in the vicinities of the L points but in the entire BZ. The
knowledge of the spectrum in a wide area of BZ i1s important for calculations of
the Mn—Mn exchange integrals for small Mn—Mn distances R. This is related to
the fact that formulae for the Mn—Mn exchange integrals contain integrals over
BZ with integrands containing oscillating factors exp(ikR). For R — oo, the main
contributions to the integrals come from the vicinity of the band extrema and we
think that in this limit the results of Refs. [6-8] are correct.

The second important difference between the present paper and Refs. [6-8] is
the form of the interaction between band states and Mn spins. While in Refs. [6-8]
this interaction has been assumed in the form of a Kondo-like Hamiltonian, His =
Jsp—aSum - 0, with one sp—d exchange coupling J.,_g4, in the present paper we
start from a more basic level, i.e. from the hybridization H’ between band states
and the d orbitals of Mn atom

H/ = Z (VLU,nka}/aa”k + Vfa,nka;rzkaLU) . (1)
Lonk
The operator aTLU creates an electron on the d shell of Mn ion in the state with

orbital momentum L and spin ¢. The operator a;rlk creates a band electron in the

state characterized by the band index n and the wave vector k. Because our band
states are built from atomic p and s orbitals the hybridization between Mn orbital
Lo and the band state nk described by Vi, ni may be expressed by three Harrison
parameters [11]: Vido, Vpar, Vpdo known from the literature [12].

The method of calculations is based on the fourth order perturbation theory
with respect to hybridization V between band states and localized d orbitals of Mn
ions [1, 13]. We assume that the valence band is completely filled with electrons and
there are two possible excited states for a manganese ion: with six or four electrons
on the d shell. Applying formulae and methods similar to those in Refs. [1] and [13]
we obtain the effective exchange Hamiltonian, Heg, which may be expressed in the
following form:
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Heg(R) = const — Z Ji;(R)S} (0)§]2(R), (2)

L] =T,Y,2

where 5’1 and 52 are the Mn ions spin operators. Each of the exchange integrals,
Jij, may be expressed as a sum of three terms: J;; = thjh + thje + Jii, where the
superscripts correspond to virtual processes in perturbation calculations involving
electrons from valence band only (hh), valence and conduction band (he), and
conduction band (ee).

In general, in the real crystals the manganese ions are not in the perfect
octahedral environment. Because the ionic radius of Mn is much smaller than the
ionic radii of Pb or Sn and, moreover, the Mn atoms are distributed randomly in
the lattice we expect that the lattice is locally deformed. In the ideal crystal PbTe
or Sn'Te, in the tight binding approximation, the band wave functions contain cer-
tain contributions from atomic orbitals of Te atoms. One of the main assumptions
of the procedure is that the amplitudes of these orbitals do not change when Pb
or Sn atom is replaced by manganese. We assume that in the limit of small Mn
concentration these amplitudes are also not changed when the crystal lattice is
locally deformed. With this assumption we may calculate hybridization elements
Vionk = (Lo|H'|xnk) changing only the positions of tellurium atomic orbitals
surrounding a manganese atom and leaving their amplitudes unchanged. From
computer simulations we know that the deviations of the bonds’ directions from
their values in an ideal crystal with the Mn concentration up to 3% are of the
order of 1°—5° [14]. It turns out that the crystal lattice deformations lead to a
decrease of about 1-3% in the absolute value of the exchange integral between the
nearest neighbours and even less for the next neighbours.

The main results of our calculations are:

1. The non-Heisenberg terms in the Hamiltonian (2) are very small. J;; for

¢ # j are of the order of 0.001 K.

2. For a given coordination zone the tensor components J;; practically do
not depend on the crystallographic direction. For example Jm(%, %,0) —
Tz (0, %, %) ~ 0.001 K. For a given R the differences between J;; and J;; for
i # j are also of the same order of magnitude. That means that the spin—spin
interaction in IV-VI SMSC is well approximated by the Heisenberg Hamil-
tonian with one exchange integral, .J, which is shown in Figs. 1 and 2. This
is different from the results by Dugaev and Litvinov [7], where Heisenberg

and non-Heisenberg terms are of the same order of magnitude.

3. The ratio of the next nearest to nearest neighbour exchange integral,
JNnN/JINN, is substantially larger in ITV=VI compounds than in TI-VI com-
pounds. We may understand this effect qualitatively if we notice that in the
rocksalt structure starting from one cation site we must travel along two
cation—anion bonds to reach the second nearest neighbour, while the short-
est path connecting two NNN sites in the zinc-blende structure goes along
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four bonds. Thus, in this sense, the “distance” between NNN is much longer
in II-VI than in IV-VI compounds.

4. The results for PbTe and SnTe for the same set of Harrison parameters are
very similar (see Fig. 1b).

The above results lead to a conclusion that the interaction between man-
ganese ions in IV-VI SMSC is in some sense “localized” | 1.e. it “propagates”
mostly via orbitals of intervening anions and the details of the band structure
are not crucial.

5. The contribution of Jee to J is very small (see Fig. 1a). The contribution
of Jue is larger than in II-VI SMSC, however, this is not related to the
crystallographic structure but rather to the smaller value of the energy gap.

6. The distance dependence of J is non-monotonic (see Fig. 1) However, this
effect appears for distances where the exchange integral is very small and it
seems unlikely that it can be verified experimentally.

OF —r——9

{-0.5F .

-1f |

|-L.5F eoPbTe| -

ol ++SnTe| |

| } 25| b) i
2 | | | | 3 P I I I |

0 2 4 6 8 100 2 4 6 8 10
Number of coordination zone

Fig. 1. Contribution of hh, he, and ee processes to the exchange integral in PbTe (a).
Comparison of the distance dependence of exchange integral in PbTe and SnTe (b).

Our calculations of the exchange constant, J(R), make sense only for R
connecting two cation sites in the rocksalt structure lattice. Only for such R,
1.e. for the case when each of the two Mn ions is placed in the cation site of
the lattice and is surrounded by six Te atoms the hybridization elements Vi, nz
are well defined and may be calculated in our model. However, the final for-
mula for the exchange constant is of the form of double integral over the BZ,
[ [dkidks exp(i(ki—ko) R)F (K1, k2), (see Refs. [1] and [13]). The function F'(ki, ko)
does not depend on R and we may formally calculate J(R) for an arbitrary R.
We have performed such calculations in order to make comparison with the results
presented in the literature, for example in Refs. [1] and [3]. In Fig. 2 we show the
dependence of J(R) on the Mn—Mn distance for three different directions of R.
We see that the exchange integral calculated in this way is non-monotonic and
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Fig. 2. Dependence of the exchange integral on Mn—Mn distance and crystallographic
direction. The points on curves correspond to the real cation—cation distance in NaCl

structure (1st, 2nd, 4th, 6th, and 8th nearest neighbour).

strongly anisotropic. This anisotropy is caused mainly by symmetry of the band
wave functions, not by the band spin—orbit effects. If in the calculations of the
band structure we turn off spin—orbit interactions on Pb and Te atoms, we obtain
practically the same results.

Our results concerning the sign and order of magnitude of the exchange
coupling are consistent with the theory and experiment presented in Ref. [4]. Al-
though the absolute values of Jyn obtained in the present paper are about two
times larger than those in Ref. [4], by changing the Harrison parameters (which
are the main parameters of the model and enter the formulae in the fourth power)
by 10-15% we could have obtained results equal to the experimental ones.

Our results differ from those presented in Refs. [6-8], even up to the sign.
We think that the origin of this difference is twofold. First, as we have already
discussed, the assumption made in Refs. [6-8] that the most important contribu-
tions to the result come from the bands’ extrema is not correct, particularly for
small Mn—Mn distances. Secondly, as has been pointed out by Larson et al. [1],
the assumption of the Kondo-like interaction between band states and the Mn ion
rules out some virtual processes which have been taken into account in the present
model.
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