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A theoretical study of two-particle systems in quasi-one-dimensional
quantum wires and quantum dots is presented. We have derived the analyti-
cal formula for the effective interaction potential between the charge carriers
confined laterally by a strong parabolic potential and applied this formula to
electron pairs in single and double quantum dots and to excitons in quantum
wires. In the single quantum dot of the sufficiently large size, we have found
the Wigner-type localization.
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1. Introduction

Quasi-one-dimensional nanostructures, i.e. quantum wires [1, 2] and carbon
nanotubes [3] have gained a lot of attention during the last decade. A Luttinger
liquid behavior [1, 3] and a quantization of conductance [4] have been reported.
In one-dimensional (1D) nanostructures, the problem of interaction between the
charge carriers is of a special importance because of the non-removable singu-
larity of the Coulomb potential, which leads to the divergent ground state [5] in
the strictly 1D exciton eigenproblem. The problem of the 1D Coulomb poten-
tial singularity can be resolved taking into account the finite-size extension of the
charge carrier wave functions in the plane perpendicular to the axis of the real
three-dimensional (3D) structure. The effective 1D interaction potential can be ob-
tained by integration over the lateral degrees of freedom [6, 7]. We have succeeded
[8] in performing this integration analytically and obtained a compact real-space
form of the effective interaction between the charge carriers confined in quasi-1D
nanostructures. In this paper, we apply this effective potential to the electron pairs
and excitons in a quasi-1D environment.
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2. Theory

Charge carriers moving in the quasi-1D nanostructures are subjected to a
strong lateral confinement potential. We assume the lateral confinement potential
to be parabolic, i.e.

Vem) = %me(h)wg(h)(xg(h) + yg(h))’

where Z¢(n), Ye(n) are the lateral coordinates of the electron (hole), Me(n) 1s the
electron (hole) effective mass, and we(y) is the lateral confinement frequency for
electrons (holes). If lateral confinement energies hwe(,) are large in comparison
to the interparticle interaction energy, the lateral degrees of freedom are frozen.
Then, all the physically interesting effects depend on only z coordinates of the
particles measured along the axis of the nanostructure. The wave function of the
two-particle complex can be approximated by

W(r1, m2) = Y(21, 22)e(Te, Ye ) Pe(n)[Te(h)s Ye(h)]- (1)
The lateral single-particle ground-state wave function for the parabolic con-
finement has the form

Ge(ny = exp |=(a® + y*) /2| /ey V7],

where lon) = (ﬁ/me(h)we(h))l/z are the oscillator lengths. The integration of the
Coulomb interaction expectation value over the lateral coordinates yields the effec-
tive potential of interaction between the electron and hole separated by a distance
z in the 1D medium in the form

a\1/2 g z
Verr(2) = — (5) Terfcx <2|1/|21) , (2)

where | = [(2+12)/2]'/2, k = €% /4meey, ¢ is the dielectric constant, and erfex(x) =
exp(z?)erfc(z) is the exponentially scaled complementary error function. Replac-

ing Iy, by l. and changing the sign of the prefactor, we obtain the electron—electron
effective interaction potential (cf. inset of Fig. 1). The derivation of effective po-
tential (2) is based on the separability [Eq. (1)] of the two-particle wave function,
which 1s valid for the strong lateral confinement or the spatial separation of the
charge carriers. The last condition is fulfilled in the Wigner molecules and weakly
coupled quantum dots, i.e. artificial molecules. Therefore, effective potential (2) is
applicable not only to the quantum wires but also to the elongated quantum dots
and to the weakly coupled quantum dots. We note that many authors, e.g. [7],
[9], and [10], were looking for the real space form of the effective electron—electron
interaction potential in the 1D nanostructures. So far, the effective potential was
either obtained by a time-consuming numerical integration [7] or replaced by ap-
proximate analytical formulae [9, 10]. However, none of these approximate formu-
lae reproduce the present form of potential (2) in the entire range of interparticle
distance z.
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Fig. 1. The lowest energy levels of the electron pair confined in a single quantum dot
with linear size D. The solid (dotted) line shows the energy of the even-parity singlet
(triplet) state. The dashed (dash-dotted) line shows the energy of odd parity triplet
(singlet) state. Inset: effective electron—electron interaction potential (solid line) and

Coulomb potential (dashed line) as functions of electron—electron distance z.

3. Results and discussion

Let us first consider the electron pair confined in the single quantum dot.
The two-electron Schrédinger equation for wave function ¢(z1, z2) is solved by the
imaginary time finite-difference technique. Throughout the present paper, we apply
the material parameters of GaAs. Moreover, we take on hwen) = hw = 6 meV and
assume the vertical confinement to be the rectangular quantum well with depth
240 meV and varying width D. Figure 1 shows that the lowest-energy levels of the
confined electron pair become twofold degenerate in the limit of large D.

The origin of this degeneracy can be understood when looking at Fig. 2,
which shows the two-electron probability density. All the states considered possess
the definite spin and definite symmetry against a spatial inversion. Therefore,
the two-electron probability density is invariant with respect to the interchange
721 < z9, because of the definite permutation symmetry, and with respect to
the reflection (21, z2) —— (—21, —22), because of the definite parity symmetry (cf.
Fig. 2). We note that the two-electron probability density vanishes along the line
z1 = z9 for triplet states, which results from the permutational symmetry, and
also along the line z; = —zy for the even-triplet and odd-singlet states; which is
caused by the simultaneous effect of the permutational and parity symmetry. When
the quantum-well width increases, the electron—electron interaction contribution
becomes large in comparison with the single-electron excitation energy, which leads
to a creation of the Coulomb hole in the probability density for the singlet states
near the line z; = z5. In consequence, for large D the probability density becomes
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Fig. 2. Two-electron probability density |1(z1, #2)|* for the states with energy depicted
in Fig. 1. The darker the shade of gray the larger the probability density. The length of

the box sides in the first, second, and third row is 110, 188, and 250 nm, respectively.

the same for the degenerate energy levels, which explains the degeneracy shown
in Fig. 1. Moreover, Fig. 2 shows that for the quantum dots with large D the
electrons are spatially separated by the Coulomb repulsion, i.e. form a Wigner
molecule [11].

We have applied effective interaction potential (2) to the problem of the
two-electron artificial molecule [12]; i.e. the electron pair confined in the two ver-
tically coupled quantum dots. Figure 3 shows the lowest singlet and triplet energy
levels of the artificial molecules as functions of thickness b of the barrier separating
the quantum dots. If b increases, the electrons become separated and localized in
the two different dots (see inset of Fig. 3). Similarly as in the case of the single
quantum dot, after the charge separation takes place, the energy of the system
is independent of the spin, which results in the degeneracy of the lowest singlet
and triplet energy levels. When the electrons are separate, the total energy of the
system exhibits the Coulombic, i.e. ~ 1/b, asymptotic behavior.

The effective interaction potential (2) has also been applied to the problem
of the ground state of the exciton in a quantum wire. In this case, the charge
carriers are not confined in the direction of the axis of the wire. Moreover, we
assume that the lateral potential is the same for the electron and the hole. Fig-
ure 4 shows the exciton binding energy defined as £y, = E — 2hw, where E is the
ground-state energy of the exciton. In Fig. 4, the dashed curve shows the “exact”
results, obtained by the variational approach with the original 3D Hamiltonian of
the exciton, and the solid curve shows the results obtained with the 1D effective
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Fig. 3.

electron pair in the double coupled quantum dot as functions of barrier thickness b.

The lowest singlet (solid line) and triplet (dashed line) energy levels of the

The potential-well width is 12 nm and depth 240 meV. Inset: two-electron probability
density |¢(z1, 22)|? for the lowest-energy singlet and triplet states. The darker the shade
of gray the larger the probability density. The length of the box sides is 35, 37, and 41

nm for b = 0, 1.5, and 6 nm, respectively.
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Fig. 4.

of lateral confinement energy hw. The dashed curve shows the results of the “exact”

Binding energy of the exciton confined in the quantum wire as a function

3D approach and the solid curve shows the results obtained with the use of effective
interaction potential (2). Inset: wave function of the exciton as a function of the relative

electron-hole distance zen, obtained with potential (2).

interaction potential (2). We see that the latter results become exact for the suf-
ficiently strong lateral confinement. The growth of the exciton binding energy is
related with the increasing localization of the relative-motion electron—hole wave
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function (cf. inset of Fig. 4), which in turn is due to the fact that the minimum of
interaction potential (2) becomes deeper when the lateral confinement potential
increases. The binding energy of the exciton in the quantum wire can be several
times larger than that in bulk crystals.

Acknowledgment

This paper has been supported in part by the State Committee for Scientific
Research.

References

[1] S. Tarucha, T. Honda, T. Saku, Solid State Commun. 94, 413 (1995).

[2] M.T. Bjork, B.J. Ohlsson, T. Sass, A.l. Persson, C. Thelander, M.H. Magnusson,
K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002).

[3] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forro, T. Nussbaumer,
C. Schonenberger, Nature 397, 673 (1999).

[4] A. Yacoby, H.L. Stormer, N.S. Wingreen, L.N. Pfeiffer, K.W. Baldwin, K.W. West,
Phys. Rev. Lett. T7, 4612 (1996).

5] R. Loudon, Am. J. Phys. 27, 649 (1959).

6] L. Banyai, I. Galbraith, C. Ell, H. Haug, Phys. Rev. B 36, 6099 (1987).

7] M.H. Szymanska, P.B. Littlewood, R.J. Needs, Phys. Rev. B 63, 205317 (2001).

8] S. Bednarek, T. Chwiej, J. Adamowski, B. Szafran, Phys. Rev. B 67, 205316
(2003).

[9] R. Egger, H. Grabert, Phys. Rev. B 55, 9929 (1997).

[10] C. Fuchs, R. v. Baltz, Phys. Rev. B 63, 085318 (2001).

[11] B. Szafran, S. Bednarek, J. Adamowski, Phys. Rev. B 67, 045311 (2003).
]

[12] M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S. Tarucha, D.G. Aust-
ing, Phys. Rev. Lett. 87, 066801 (2001).

[
[
[
[



