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Stability of Deep Water Waves
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The Benjamin—Ono equation models the dynamics of internal waves
in stratified fluids of great depth. It includes an integral (Hilbert trans-
form) term, and so stability calculations might seem difficult. We expand
in both the amplitude of the nonlinear wave and the wave vector of the
perturbation, assumed to be small quantities of the same order. An ex-
pression for the nonlinear dispersion relation is obtained. Nonlinear peri-
odic Benjamin—-Ono waves are stable, just as the localized, algebraic soli-
ton solutions (Lorentzians), already known to be stable. (This also follows
as a limit of our calculations.) We extend the known analogy between the
Benjamin—Ono and modified Korteweg—de Vries equations.

PACS numbers: 47.20.Ky, 52.35.Py

1. Introduction

Some time ago, Benjamin, Davis and Acrivos, and, somewhat later, Ono,
formulated an equation for the propagation of deep water waves in a stratified,
incompressible fluid (for some reason known as the Benjamin-Ono rather than

BDAO equation) [1, 2]:
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where P stands for the principal part of the integral. The first two formulations were
for steady propagation, the third for arbitrary time dependence as above. Here
«a and 3 are constants determined by the initial density profile of the fluid. The
function f generates the horizontal space and time dependence of both components

of the fluid velocity as follows:

Vx :f(xat)&i;—;y)a (3)
__or
Vy=-5.9 (4)

The fluid is indeed incompressible, as V'V = 0. Here @(y) satisfies a linear differ-
ential equation

where ¢g is a constant and pg(y) is the initial density profile as a function of the
depth, assumed known. Attention usually concentrates on the more interesting
Eq. (1). Over the years, considerable progress has been made here. The equation
has been demonstrated to be integrable [3, 4]. Tt admits N soliton solutions [5-7],
and these solutions are stable [8, 9]. The evolution of a general, compact initial
condition has been studied [7]. Here, we will show that exact, periodic nonlinear
travelling wave solutions as found by Ono [2], are also marginally stable. (In the
limit of infinite wavelength, they yield the algebraic Lorentzian soliton.)

2. Form of the wave

Ono found an exact, propagating wave solution to Eq. (1) [2]. Tt was, in
slightly altered notation here,

A

Jo(é) = Tos(k&f)’ E=x— A, (6)
B 262]92
A= (7)

a=/1-(Bk/N)2. (8)

Here £ is a nonlinear analogue of a wave number. These exact solutions are excep-
tional in that most equations of the Korteweg—de Vries (IKdV) class are solved by
travelling waves given by elliptic functions, known as cnoidal waves, more com-
plicated than these (elementary functions). These last solutions (6)—(8) are easily
confirmed when we use the identity (k > 0):
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1 B asin(k§)
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In what follows we will need:

H(e*€) = —isgn(k)elké, (10a)
H(cos(ké)) = sgn(k)sin(ké). (10Db)
This second part is the lowest order term of (9). In fact, (9) can conversely be

derived by repeated use of (10b). In the £ — 0 limit, the solutions (6)—(8) tend to
a Lorentzian

2
_ W (11)
&2+ p2/A2
Directly derivable from Eq. (1) when we use

lim fo(€)

#(eiw) e
£2 462 - |5|(€2 + 52)'

This solution i1s known to be stable. These solitons are likewise unusual for the
KdV family, as single humped solitons usually involve hyperbolic secans functions.

In this paper we will address the problem of stability of the periodic, nonlin-
ear waves given by (6)—(8), as well as algebraic profile structures (11). These have
in fact been generated experimentally by Davis and Acrivos [1]. They were seen to
propagate at a steady rate without distortion. This experimental fact might lead
us to expect stability.

Incidentally, all the above solutions are virtually identical to a class of solu-
tions to the modified KdV equation

of | w0 | LO°f _

E—i—f a—x+6$—0, (12)
which is integrable. As both the solutions and the integrability properties are
similar, we might like to compare the stability properties of (1) and (12). Small
amplitude, cnoidal, periodic travelling wave solutions to (12) are unstable [10, 11].
Nevertheless, the very special exact solutions treated here are stable. (For a calcu-
lation specific to this problem, see Appendix.) Solitons of (12) are also stable. We
will see that the same scenario governs Eq. (1), thus strengthening the similarity
of the two equations. All this might point at a deeper correspondence between
these two equations. This would be interesting in view of the different nonlinear
terms.

3. Stability calculation

Stability calculations for differential-integral equations are rarely attempted
for obvious reasons. However, by a two parameter expansion, we will be able to
sidestep the inherent difficulties.
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In this calculation we expand in both the amplitude a and the wavelength
of the perturbation K, taken to be of the same order. Thus, from (6):

Jo=A |1+ acos(ké) + %az + %az cos(2kE)+0(a®)| | (13)
and

f=rfo+0f, (14a)

§f = e FEHTpG(&) + 0 () + .. ] + cec., (14b)

I'=n+Is+... (14c)

and I' is a growth rate. It follows from Floquet’s theorem [12], that all ¥, are
periodic with the same period as fy(€). This introduces a degeneracy in (14), as
K — nk £+ K are also admissible. Equation (1) becomes, upon linearization,

g f 3 06 f 0 0?

i~ N ge tageUobh) = B M) =0. (15)

The dispersion relation in the linear limit, § f oc el(¥=«*) is given by the frequency

w=(=A+ aA — Flk))k. For small a we have, from (7) and (8),

(ﬁA_’f) e (16a)

A=pBk(1+d%/24..)), (16b)

- @(1 —a224 ), (16¢)
Introducing the linear operator L:
2

L= paul 59y (17)

o¢ o¢ ogr "

we see that, at zero order in a:

LWy =0, Wy =elke+n), (18)
However, we find from (16) that there is a second-order correction

LWy = —%ik%a%i(’ffﬂ). (19)
In first order in ¢ and k& we find

L = —(I' + iwgk)¥o — aAa[Wy cos(k§)]e, (20)

wp = —A\. (21)

Thus, to avoid secular terms, I} = 1AK . For possible instabilities we must therefore
proceed to second order.
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From (20) we find
W, = ae%+7) 4 const. (22)

When we perform the second-order calculation, using (19) and (22) in (15), we
find that the constant is —%ae” and also that secular terms in ¥, can only be
avoided if e'*¢+7) and e~1#¢=7) terms on the right hand side are also zero. We

obtain finally
I'y = +ipK2. (23)

The stable perturbation splits. This result takes the form of an extended Lighthill
theorem [12]. (In the original Lighthill form, the second term under the square
root was missing [13]):

I'y = £y Jweewppa? K2 —w?, K*/4 (24)

(subscripts denote differentiation). Indeed, we see from (15) that wyp = +28.
Calculation of wgz, as above, is of course not so straightforward (though all
terms cancel). Due to the degeneracy introduced by the periodicity of the ¥,
I's(nk + K) are also roots. Collecting our results, we can write our solution as a
Fourier expansion, slightly extended because of the degeneracy

. 1
=1l = ka + §wkkK2.

The amplitude of the nonlinear wave only introduces the degeneracy as mentioned
above. Exceptionally for this kind of problem, the amplitude does not appear in
the nonlinear dispersion relation as calculated up to second order. This is a rare
example of Lighthill’s w,> vanishing.

A different method, such that we expand in K only, keeping the wave profile
exact [12], just yields agreement to lowest order

I = iAK,

missing the splitting. Ironically, this calculation, though ostensibly yielding less
information than the above, is much more complicated (see the first reference
of [12], Chapter 8 for the method). However, it does tell us that there are no
contributions like a?K to £2.

4. Summary

We have been able to resolve the question of the stability of known, exact
nonlinear wave solutions to the Benjamin—-Ono (BO) equation. Historically, first
its integrability was established, e.g. by the ubiquitous Painlevé method [4], then,
almost simultaneously, NV soliton solutions were constructed and investigated for
stability [8]. Thus it was time to determine the question of stability of nonlinear
waves and derive Lighthill’s formula for perturbations to them. This step has
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now been taken for this generic equation. The fact that Lighthill’s formula can
be derived for perturbed nonlocal equations, as well as the procedure outlined
here, may prove useful in other contexts. These could include extensions to other
members of the BO family, either with an extra interaction term [3], or else a couple
of BO equations describing two interacting wave trains at different depths [14].
These extensions should be straightforward but could be laborious.

In all these cases, both treated here and indicated immediately above, stabil-
ity must be established before wave solutions can be considered to be of physical
significance, rather than just mathematical artifacts. It is a strange sign of the
times that wave dynamics often lags behind soliton work, even though nonlinear
wave trains are more common in everyday life.
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Appendix

Equation (12) has exact solutions that represent propagating waves [2, 14]:

B
B = 30k*/ fo, (4.2)
A= f3— ok, (A4-3)

b=+/1— B/(2fo), (A4)

where now fj is a constant.
When a small b, small K analysis, similar to that of this paper, 1s performed,
we obtain (with the same notation)

o8 f 5 0 9 dPf

7 + gk 85[(1 + 6bcoské + 6b% cos2kE+ .. )6 f]+ 3 ge = 0. (A.D)
We find that

Uy = cos(ké + ), (A.6)
and next, in first order,

Uy = bcos(2kE +v) — 3bcosy. (A7)

In second order, exclusion of secular terms, produced by cos(ké+7v) and sin(k€+7)
on the right, leads to the condition
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Iy = +i\/360k202 K2 + 952k2 K4, (A.8)
Equation (A.8) is likewise in the form of an extended Lighthill theorem, as
wir = —68k. Now wgewyy is negative and stability is obtained again (compare
Eq. (A.8) with (24)).

The Lorentzian is obtained in the & — 0 limit
ﬂ §2 = %
82+ &% fo’ 2fo’
and is stable, as can be seen from (A.8) when k = 0. The stability of the algebraic

f=1t- A= 13, (A.9)

soliton is important in several branches of physics, including not only situations
described here (for an optical context see [15]).

This stability calculation is not included in that of [11], for reasons explained
in the previous section.
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