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Electronic Energy Loss of the Partially
Stripped Boron-Like and Carbon-Like
Fast Tons

H. GimUs*, C. OzaLp AND A. KOROGLU

Department of Physics, Faculty of Science and Arts
Ondokuz Mayis University, Samsun, Turkey

(Received May 10, 2002; revised version October 1, 2002)

An analytical formula of the electronic stopping power expression in
this study was derived for swift boron-like and carbon-like ions by using
first-order perturbation theory and frozen-charge-state model. The Hartree—
Fock—Slater determinant was used for the description of the bound electrons
attached to ions in the ground state and orbital-screening parameter was
determined by variational method. The calculated ground state energies in
this study were compared with the results of Clementi-Roetti and they are
in good agreement with 5%. It has been observed that the difference of en-
ergy loss for boron-like and carbon-like projectiles in a frozen-charge state
increases as an atomic number increases. Furthermore, the analytical ex-
pression of the effective charge of boron-like and carbon-like projectiles was
derived.

PACS numbers: 34.50.Bw, 61.85.4+p

1. Introduction

In the interaction of swift charged particles passing through matter, the
quantity of stopping power or energy loss plays the main role in many fields such
as impurity atom implanting to semiconductor device, structural analysis of solid
target by Rutherford backscattering spectroscopy (RBS), and plasma-first wall
interactions in nuclear-fusion reactor.
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The electronic stopping power of materials has been extensively investigated
for fast-ionised projectiles, based on the first Born approximation. In general, stop-
ping power data for gases and solid media were provided from the experimental
view point [1, 2]. On the other hand, theoretical studies have been based on the
atomic model [3, 4], the free-electron gas model [6-7], kinetic model [8], a nonlinear
calculation [9], the local density model [10, 11], and the wave-packet model [12].

As a quantum-mechanical, Bethe and Bloch first theoretically studied the
quantity of stopping power considering the point charge state [3, 4]. For a swift
point charge Z;e moving at a velocity v in a target matter with an atomic num-
ber Zs, the energy loss per unit path length is formulated [3] by

4ret 2mu?
S = ( 2)NZ2Z12111 (T) , (1)

mv

where m and e are the electron rest mass and the elementary charge and N and
I — the number density and the mean excitation energy of the target atoms,
respectively. Later, the higher-order terms, the Barkas term (or Z3 term) [13] and
the Bloch term (or Zi term) [4], together with shell corrections [14] were added
to the Bethe expression to obtain the standard formula for energy loss of fully
stripped swift light 1ons.

The energy loss of partially stripped ions for a slow He*t ion passing through
degenerated electron gas was firstly investigated by Ferrell and Ritchie [15]. If the
number of bound electrons on projectile is large enough, the partially stripped 1ons
may be just explained by a Thomas—Fermi atom model and then its energy loss
in the electron gas can be similarly formulated [16, 17] as the treatment of Ferrell
and Ritchie. Furthermore, the concept of effective charge Zeg is necessary to define
as the square root of the stopping power for projectile relative to that for proton
moving in the same matter at the same velocity. Two quantities as the spatial size
and average number of bound electron generally contribute to the effective charge.

For the partially stripped fast hydrogen-like and helium-like ions, an analyt-
ical formula for electronic stopping power was derived by Kaneko [18]. Later on,
he extended this analytical formula to £ < 4 bound electron [19]

4
S = (4” ) NZyL(Z1, Zo,v) (2a)

muv?

with

2
L(Z1, Zo,v) = (Z1 — Noy — 2)*In (2";“ )
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Here the Barkas and Bloch terms and the shell correction are neglected. In Eq. (2b)
N5, denotes the number of 2s electron. 7, = Z1; and Ns; = 1 for lithium-like
projectiles, 7. = Zp. and Ns; = 2 for beryllium-like ones. The quantity Z. is the
orbital screening parameter, vq is the Bohr velocity (2.188 x 10% cm/s).

In this study, analytical formulae for the electronic energy loss of swift
boron-like and carbon-like ions are presented within the framework of the first
Born approximation. Firstly, total energy is minimised using a variational method
in order to determine the spatial distribution of the bound electrons on projectile.
Secondly, analytical formula for the stopping power is derived for swift boron-like
and carbon-like ions and a degree of screening per bound electron is discussed.

2. Theory

In the present work, we consider the case where the projectile velocities are
higher than both the statistical average velocity 222/300 (vo = 2.188 x 10® cm/s)
of the target electron and the velocity Z.vg of bound electrons on the projectile.
Here, our procedure is based on the first-order perturbation treatment, so that
the formulae derived later for swift partially stripped ions correspond to the Bethe
expression (1) in the sense of having the same theoretical base [18, 19]. The spatial
distribution of the bound electrons on a projectile is determined by minimising
total energy, using a variational method.

Here we consider the electron distribution p(r) in the ground state projec-
tile under the frozen charge state. We consider a boron-like projectile having five
electrons in the 15225%2p singlet configuration and a carbon-like projectile having
six electrons in the 1522s5%2p? configuration, respectively. In order to calculate the
total energy of system in a quantum mechanical manner, the Hamiltonian of our
system 1s given as

B, Zie? 1

H:Z<_%vi_r—i +§'Z Vi, (3)
i i(i#)

where V;; is the interaction potential energy of two electrons in ¢ and j positions

and written as
2

Vo= 4)
The wave function ¥ of carbon-like particles are described by Hartree—Fock—Slater
determinant:
1/)1s(7‘1)04 1/)1s(7‘1)5 1/)25(7‘1)(1 1/)2s(7‘1)5 1/)2p(7‘1)04 1/)2p(7‘1)5
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LD:L Vis(rs)a Y1s(r3)f as(ra)a as(r3)B Yap(rs)a hap(rs)f (5)
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where

— /2
1 200\ Zer Zer
Uas(r) = T ( 7. ) (2 " ) exp (— 2a0) , (6b)

%Aﬂ:_i_<§awawm<_§i)wq@, (6¢)

327

a and [ represent spin wave functions for up-spin and down-spin state, respectively.
The normalised wave functions ¥y,(#), Was(r), and Wy, (r) are orthogonal to each
other [20]. The constants Z. in (6a), (6b), and (6¢) show the orbital-screening
parameter, depending both on the number of bound electrons and on the atomic
number Z; of projectile.

The Fi; and Ess energies, Vig_1s, Vis—2s, and Vos_as direct Coulomb inte-
grals, Ajs_os the exchange integral between electrons with parallel spins for s-level
were calculated by Kaneko [19]. Furthermore, the Eap, energy, Vis—a2p, Vas—2p, and
Vop—ap, and Aj5_sp and Ass_sp have been calculated in this study. These are:

Exp= 1 Fu, (7a)
Vi = e, (7)
Vi = St (7c)
i ()
Ags_ap = %625—;, (Te)
Ang—op = 5%@25—;. (70)

Thus, Kaneko’s results for s-level [19] and results in this study for p-level are used
to calculate the electronic stopping power and orbital-screening parameters of
boron-like and carbon-like swift ions. Using Eqgs. (6a—6b), the expectation values
(HYue, {(H)1i, and (H)pe of H and orbital-screening parameters Zue, Zvi, and
ZBe of Z. for helium-like (¢ = 2, 1s? configuration), lithium-like (¢ = 3, 1s22s!
configuration) and beryllium-like (¢ = 4, 1s?2s? configuration) electron systems
were calculated by Kaneko [19], respectively. In this study, Eqgs. (6a—6c¢) were used
to calculate the expectation values (H) of H for carbon-like and boron-like fast
ions.
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The expectation value (H) of H for carbon-like (¢ = 6, 15?2s22p? configu-
ration) swift ions is given as

<H>C = 2Els + 2E25 + 2E2p + Vls—ls + 4V15—25 + 4V15—2p + V2S—28

+4V25—2p + VZp—Zp - 2Als—25 - 2Als—2p - 2A25—2p~ (8)

If every term is calculated separately and substituted in Eq. (8), respectively, after
simple algebra, the total energy for the carbon-like system is represented as

3 55319836
HYe = 272 - 37,7, + 22227027 7. 9
(H)o =52 12e ¥ 16796160 )

in units of €?/ag. This energy takes the minimum value

3
(Hye =272 (10)
at Z. = Z¢, where

Zo =71 —1.0978. (11)

Similarly, we can obtain the total energy expression (H)p for boron-like
(¢ =5, 15?2s%2p configuration) electron system as follows:

<H>B =2F1s+2E9 + EZp 4+ Vis—1s +4Vig_as + 2V15—2p + Vas_as

+2V25—2p - 2Als—2s - Als—Zp - A25—2pa (12)
11 7841956
Hyg=— (22 - 7,7, —7 1
() = T (22 = 712) + sy 72 (13)
in units of e?/ag. The minimum value of (13) can readily be found to be
11
() = X 23 (1)

at Z. = Zp, where

Zp =71 — 0.8489. (15)
2.1. Stopping power formula

The stopping power formulae derived by Kaneko [19] for partially stripped
lithium-like and beryllium-like ions were extended to boron-like and carbon-like
ions in this study. As explained in the introduction, it is assumed that the charge
state of bound electrons of the carbon-like and boron-like projectiles is fixed and
not subjected to excitation inside the target material.

As a quantum-mechanical, a general expression for the energy loss formula
per unit path length in Born approximation is represented by [21, 22]

s=NE - [ (S )8 () < PP IR 0

. 3
min q
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In the above, F, and Ey, denote the eigen-energies of the target states n and 0,
respectively. N 1s the number of target atoms per unit volume. The momentum ¢
transferred to the target electrons ranges from qmin = (Fp — Eg)/v t0 ¢gmax = 2mu.
In Eq. (16) the form factor of projectile, F{,(—gq), and inelastic scattering ampli-
tude of target atom, Fl,(q), are expressed as

Foo(—q) = 71 — @IZGXP (ig- )W), (17a)
Frolg) = WZGXP (ig - 7;)[0). (17b)

The term (|5, exp(+iq - #;)|¥) on the right hand side of Eq. (17a) [afterwards
denoted as p(gq)] shows the Fourier transform of the spatial electron distribution
(Z|>°;6(r — r;)|F7). The charge density of boron-like and carbon-like projectiles
are given as

p(@) = Nispis(@) + Nospas (@) + Noppap(q), (18)

where Ny, Nas, and Nsp are the number of the 1s, 2s, and 2p electrons on the
projectile, respectively. Ny, = 2, and Na, = 2 for carbon and boron, but Nop =1
for boron and Nop = 2 for carbon. The pi, and ps,s charge densities for lithium-like
and beryllium-like projectiles were found by Kaneko [19]. In this study, psp charge
density has been found to be

pon(@) = Z8 /a8 — 5q°Z8 [ af (19)
2,, (¢® +44°22/ad + 6¢1 72 [ad + 44> Z8 [af + Z8aF)

Substituting p1s, pas, and pap charge densities in Eq. (18), we can obtain an
expression for boron-like and carbon-like ions as follows:

[2(qa0/Z)* = 1[(gao/Z)* = 1]
[1+ (qao/Z.)*]*
Z2 /a5 — bq*Z¢/ag
¢+ 44572 /ad + 6¢1 7L [ad + 442728 [af + Z3[af]

In order to calculate the electronic stopping power, it is convenient to divide

(@) =2 [1+ (ga0/Z)?] " +2

+N2p [ (20)

the integration region [¢min, ¢max] into two sections that are A = [gmin, ¢o] and
B = [q0, ¢max), Where ¢¢ is a parameter such that the dipole approximation can
be used for F};(q). Physically, this means the separation of close and distant
collisions. Hereby, we can obtain exp(—ig-r;) =1 —ig-r; for ¢-r; < 1 and the
contribution of the distant collision, S4, is then represented by

62 2 5 qo dq 9
Sy = N;(En — Ep)8n (5) |dno|? x /qm (7) b (=) (21)

Here d,¢ i1s the dipole-transition matrix element. On the other hand, the contri-
bution of the close collision, Sg, is given by
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52 o2\ 2 dmax (g . ,
SB =N (%) Z287T (ﬁ) X /qu (7) |F00(—q)| . (22)

Here we can interchange the order of the summation over n and the integration
over ¢ because both ¢max and ¢p are independent of the eigenstate |n). Hence, we
can use the sum rule [20, 23].

wammmmwzcwﬁa. (23)

2m

The definite integrals on the right hand side in S4 and Sp can be estimated if we
used the following result:

dg
[ Lirs-ar = [ iz - sl (24)
Substituting Eq. (20), if this integral is calculated, Eq. (24) is found to be

[ iz - pla)? = Atnia) + Blal(qan /2. + 1

7
+Y Ba/l(aao/Ze)* + 11" + Colnf(gao/Ze)* + 4]

+3° Cufl(gao/ 2.)* + 41" (25)

Here integral constants are:

A= (Z) — Noyp —4)%,

By =27y + Z1Nap — (98/81)Nyp — (1/2) N3, + 350/81,

By = —Z1Nop — 227 + (278/27)Nop + (1/2)N3, + 758/27,

By = Zy = (1/2)Z Nop — (13/3)Nop + (1/4)N3, — 151/9,

Bs = =471 — 221 Nop + (70/9)Nop + (1/6) N3, + 134/9,

By = (1/2)Nop + (1/8)N3, —3/2,  Bs = (22/5)Nap + (1/10)N3, + 10,
Bg = —12Ngp —2N3, — 16, By = (T2/T)Nayp + (18/T)N3, + 72/7,

Co =27, — (226/81)Nop — 998/81, ) = (56/27)Nop — 87, + 152/9,

Cy=16, C3=128/3.
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For the distant collision, S4, the upper limit (¢ = o) and lower limit (¢ = ¢min)

are replaced in Eq. (25) and in ¢2, (ao/Z.)? < 1 approximation and then we
obtain

Sy = (4”4) NZQ{QA In(go) + BoIn[l + (g0a0/Z.)*]

muv?

7
+ D Ba/[L+ (g0a0/Ze)*]" + Coln[d + (g0a0/ Zc)’]
+ Z Cn/[4 + (QOGO/Ze)z]n — 24 IH(Qmin) - BO(QminClO/Ze)2
7
- Z Bn/[l + n(QmiHGO/ZG)z] - CO [111(4) + (QminClO/QZe)z]
= 3" Gal(1/4") = (/4" Y (gminao/ Z.)°1 | (26)

For the close collision, Sg, the upper limit (¢ = ¢max) and lower limit (¢ = ¢o) are
written in Eq. (25) and in ¢2,,(a0/Z)? > 4 approximation and then we get

Are?
SB = (7:;52 ) NZ2{2A ln(qmax) + BO[IH(Qmaxao/Ze)z + (1/(qmaxa0/Z€)z]

+Bl/(Qmaxa0/Ze)2 + CO[IH(QmaXGO/Ze)z + 4/(Qmaxa0/Ze)2]

7
=Y Bua/[L+ (g0a0/Ze)’]" = Coln[4 + (g0a0/Ze)’]

n=1

3

=3 Cu/l+ (a0a0/ 2" }. (27)

n=1

As the contributions of the distant and close collisions are separately evaluated and

constants are replaced, the sum of S4 and Sp gives the total electronic stopping
power for boron-like and carbon-like ions.

S = (4me? /mv* )N Zo L(Zy, Z2, v). (28a)

Here L(7Z1, Z2,v) is the number of stopping and as shown
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L(Z1,Z5,v) = (Z1 — Nop — 42 In(2mv? /1)

+[271 Nop — (196/81)Nap — Ny, 4 471 + 700/81] In(2v/ Z . vo)

+4[Z1 — (113/81)Nap — 499/81] In(v/Zevo) + TZ1 + (7/2) Z1 Nop

—(32971/1890)No, — 13177/378 — (1439/840) N3, (28b)

where I denotes the mean excitation energy of the target material. In Eq. (28b), for
boron-like particles, Z. = Z; — 0.8488 and No, = 1 and for carbon-like particles,
Z, = 7y —1.0978 and Nyp = 2. Here, the separation parameter gy vanishes.

It is seen that the stopping power of the target material is characterised by
three quantities (I, 7, and N). It is interesting that the first term of (28b) is
interpreted as Bethe’s original form for a net charge (7, — Nap — 4). This term
comes from the logarithmic term in Eq. (25). The spatial size of the projectile is
completely neglected there. The other terms are correction terms.

2.2. The concept of effective charge in electronic stopping power

In this section, the affection of effective charge of the projectile will be dis-
cussed. The concept of effective charge is very useful to understand and compile
the stopping power data. This thought i1s based on the proportionality of the Bethe
formula to the square of the charge of projectile. The effective charge is defined as
the square root of the ratio of the stopping power S to the proton stopping power
Sp at the same velocity:

Zerr = (5/Sp)Y2. (29)

The view of the effective charge is to summarise various effects on the electronic
excitation such as the spatial size and charge-changing effects into only one pa-
rameter Zeg. As used the definition of Zegr, the quantity L(Z;, Za, v) of Eq. (28b)
is given by (Zeg)? In(2mv?/1).

The effective charge has generally two aspects that are charge-exchange and
spatial size effects. The charge-exchange is represented by stripping bound elec-
trons more and more to become a bare nucleus with increasing velocity. On the
other hand the spatial size effect becomes larger the contribution of close collisions,
where the target electrons are scattered by an incident particle with effective charge
greater than its net charge. The reason is the incomplete screening of the nuclear
charge by bound electrons. In the frozen charge state 1ons, the distribution of elec-
trons is assumed to be fixed during passing even at high velocities. In this case,
the effective charge of frozen charge state ions contains only the size effect.

Let us show an exact representation for Zeg of ions in a frozen charge state.
From Eq. (28b) and the definition of Zeg, we can easily show for boron-like and
carbon-like ions by
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Z% = (Z1 = Nop = 4)° + [In(2m?/T)] "
x{[221Nop — (196/81)Nop — N3, + 421 +700/81] In(2v/ Z . vo)
4471 — (113/81)Nop — 499/81]In(v/Z.v0) 4+ TZ1 + (7/2) Z1 Nap

—(32971/1890) N2, — 13177/378 — (1439/840) N2, }. (30)

Here Z; is the atomic number of an incident ion, Ny, is the number of electrons
in 2p orbital and v is the velocity of the incident ion.

In the high velocity limit, i.e., when v > Z.vg and v > (I/2m)'/2, Z.g in
Eq. (30) approaches the asymptotic value

P = (1 — Nop =4 + 73], (31)
which is independent of velocity.

Equation (31) means that in the high velocity limit the square of the effective
charge 1s the arithmetic average of the square of the nuclear charge of a projectile
and square of the net charge [24]. This relation shows us that there are equal
contributions from two extreme cases, i.e. complete neglect of bound electrons and
complete screening of the nucleus.

When the effective charge Zeg(¢) of anion in the charge state ¢ (= 71— Ny,—
Ny — Nagp) is derived from Eq. (30), the magnitude of screening can be estimated
by a bound electron. Here we can define the screening charge Zs.(¢, ¢ — 1) by

Zsc(Qa q— 1) = Zeff(q) - Zeff(q - 1) (32)
This screen charge will be found to show the shell effect to the stopping power [19].

3. Results and discussion

Here, we discuss first the validity of the choice of wave function. It is seen
that it is quite reasonable [25] to describe the ground-state boron-like (1s%2522p)
and carbon-like (1522s22p?) projectiles by s- and p-types wave functions. The total
energy of the system calculated in this way should be compared with any available
detailed results but we could not find a good example, so a comparison was only
made for neutral boron and carbon atoms. According to (9) and (10), and (13)
and (14), the calculating total energy of the neutral boron and carbon atoms are
FE = —-23.693 and F = —36.046 eV, respectively. However, Clementi and Roetti [25]
calculated Fcr = —24.529 eV for boron atom and Fcr = —37.688 eV for carbon
atoms, so that the difference AN = F — Fer = 0.836 and AF = F— Fer = 1.642
for boron and carbon atom, respectively. This is caused by a rather rough de-
scription of the one-electron wave function adopted. However, the ratio AE/Ecg
amounts for boron and carbon atoms to only 3.40 and 4.356%), respectively. Fur-
thermore, orbital screening parameters for boron and carbon atoms are 4.1511 and
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4.9021 in our calculation and 4.2236 and 5.0125 in Clementi and Roetti’s one [25].
Then, according to the obtained results in this study, we think the trial wave func-
tion in the present variational method is not bad. But the values of ratio AE/Ecg
increase with increasing the atomic number of projectiles. Therefore, it can be said
that this method does not work in heavier atoms.

Figures 1, 2, and 3 show the calculated electronic energy loss of carbon for
04t (¢ = 2-3), N4t (¢ = 1-2), and C¢* (¢ = 0—1) ions, respectively, with
velocity from v = 3vy to v = 90vg under the frozen-charge state condition. Here,
the mean excitation energy I of carbon is taken to be I = 77.3 eV [1].

We used equations (28a) and (28b) in calculation of the electronic energy
loss for O3t (B-like) and O?* (C-like), N2t (B-like) and N'* (C-like) and C'+
(B-like) and C ions, respectively. In general, the average radius of the bound
electron becomes smaller with increasing 77 because it is approximately inversely
proportional to Z7. As a result, the net-charge approximation is valid for heavier
(or larger 7Z1) ions because of the screening of the projectile’s nuclear charge by the
bound electrons. Equation (28) clearly shows that the first term, In(2mv? /1), plays
a dominant role for large Z;. In other words, the ion can be considered as a point
charge. This picture leads to the other conclusion that the effective stopping-power
charge Z.g reduces to the net charge. As a result, the effective charge depends on
both Z; and ion velocity. The electronic energy loss of 0?1 ion is smaller than
O3* one at a higher velocity.

Figures 1, 2, and 3 show that the stopping power decreases at a higher energy
region as velocity increases. Also, the difference between the stopping power values
for boron-like and carbon-like ions increases with increasing the atomic number of
the incident ion.

o 12 T T T T
g 1
g. 10 o —=C ]
>
[ J
=
° R o 4
o 8 v — B-like O (present results)
B C-like O (present results)
\ B Li-like O (Ogawa et. al (exp.)) i

Kumar et al (exp.)
— - =~ SRIM2000 (ver.40)

20 40 60 80
Velocity v (2.188x10°cmis)

Fig. 1. Electronic stopping power of carbon for Ot (¢ = 2—3) ions as a function of
velocity. The theoretical results of Eq. (28) are drawn for ¢ = 2, B-like, ¢ = 3, C-like.
The experimental data are taken form Ogawa et al. [27] and Kumar [28]. For compari-
son, we also show SRIM2000 calculated results [26].
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Figure 1 shows the calculated stopping power of carbon for O/t (¢ = 2—3)
ions with a velocity from v = 3vp to v = 90vg, together with SRIM2000 results [26]
and experimental data for lithium-like oxygen of Ogawa et al. [27] at v = 20.6vg
under the frozen-charge-state condition and for oxygen ions of Kumar [28]. Ogawa
et al. have found that the fixed charge stopping powers of carbon for 169.4 MeV

Fig. 2.

Fig. 3.

S (MeV.cm’/mg)

o

©

N® — C

— B-like N (present results) -
C-like N (present results)
""""" SRIM2000 (ver.40) -
B Blank et al(exp.) 1

20

40 60 80
Velocity v (2.188x10°cmis)

Electronic stopping power of carbon for N9T (¢ = 1—2) ions as a function of
velocity. The present theoretical results of Eq. (28) are drawn for ¢ = 1, B-like; ¢ = 2,
C-like. We also show SRIM2000 calculated results [26]. The experimental data are taken
from Blank et al. [29].

S (MeV.cmZ/mg)

[or]

(o]

]

''''''' SRIM2000 (ver. 40) .

+.

c*— )

B-like C (present work)

C (present work)

Tao et al(exp., 98)

He-like C (Ogawa et al.(exp. 92))

: b SRR TP PP PEETP poooooo- =

40 60 80
Velocity v (2.188x10°cmis)

Electronic stopping power of carbon for CIt (g = 0—1) ions as a function of
velocity. The theoretical results of Eq. (28) are drawn for ¢ = 1 B-like; ¢ = 0, C-like. We
also show SRIM2000 calculated results [26]. The experimental results are taken from
Tao et al. [30] and for He-like C ions from Ogawa et al. [31].
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oxygen ions are 2.61740.023 keV /(ug/cm?), 2.1714£0.018 keV /(pg/cm?), 1.797+
0.024 keV/(pg/em?) and 1.517 £ 0.027 keV /(ug/cm?) for 0%+, O™, O%* and
O3, respectively. According to this, the stopping power for oxygen at the same
energy decreases as q decreases. Therefore, the present calculation results are con-
sistent with these experimental results.

Figure 2 shows the calculated stopping power of carbon for Nt (¢ = 1-2)
ions with a velocity from v = 3vg to v = 90vg, together with SRIM2000 re-
sults [26] and experimental data [29]. The calculated stopping power results for
beryllium-like nitrogen and carbon-like N 1s lower than SRIM2000 results, because
in the present work, the electronic stopping power for N has been calculated for
B-like ions with five bound electrons and C-like ions with six bound electrons.

Figure 3 shows the calculated stopping power of carbon for C/* (¢ = 0—1)
ions with a velocity from v = 3vp to v = 90vg, together with SRIM2000 results [26]
and experimental data [30, 31]. Experimental energy loss data for a helium-like
carbon ion are taken from Ogawa et al. [31]. Agreement between the calculated
electronic energy loss results from Eq. (28) and the experimental data is good, but
lower than the SRIM2000 calculated results.

Figures 4, 5, and 6 show the effective charge Z.g calculated for O¢t
(¢ = 2—3), Nt (¢ = 1-2), and C¢* (¢ = 0—1) ions, respectively, in collisions
with carbon targets at a velocity from v = 3vg to v = 90vy. From the Figures, it
can be seen that the effective charge of a particularly stripped ion increases with
a velocity in any charge state. At very high velocities, the effective charge 1s at
least saturated, to be constant given by Eq. (30) or (32). The Figures show the
importance of the effect of bound electrons attached to a projectile even at high
velocities.

In this study, as a result, the ground state energies have been calculated by
using hydrogen-like wave functions for boron and carbon ions (¢ < 6). After that,
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Fig. 4. Effective charge of 09t (¢ = 2—3) ions passing through carbon foils as a function

of velocity.
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Z, variation parameters were found for this. The calculated ground state total
energies are consistent with the values of Clementi—Roetti with 3—4%.

In conclusion, the analytical expression for the electronic stopping power for
boron-like and carbon-like projectiles in a frozen-charge state was derived on the
basis of the first-order perturbation theory and the Hartree—Fock—Slater method.
Also, the correction term AL(Zy, Z»,v) at a high velocity can be easily obtained
from these expressions. The effective stopping power charge of frozen-charge-state
projectiles was calculated.
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