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In the paper a special form of the generalized nonlinear Schrodinger
equation in saturable medium with nonlinear dispersion and the self-frequency
shift terms i1s considered. The solutions describing both the intensity and
phase profiles of grey solitons propagating in this medium are obtained. Four
cases of medium with or without saturation and with or without higher order
terms are considered. For a square-two-level model of saturation analytical
explicit solutions are derived. The relations between the medium and prop-
agation parameters of solitons are discussed.
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1. Introduction

Light pulse propagating through a nonlinear Kerr-like dielectric interacts
with it in many ways. The effects caused by this interaction change the shape
of the pulse. Among them two are most important — the linear effect of group
velocity dispersion (GVD) and self-phase modulation (SPM) caused by nonlinear
polarization of the medium [1-3]. If these two effects mutually compensate, the
pulse of a special shape — soliton — can travel through the medium without any
changes. But for the strong electric field of the pulse also another effects should be
taken into account. One of them — the third order dispersion — is linear [4-6]; the
others are nonlinear. In the paper two of such effects are considered — nonlinear
dispersion (ND) [6-9] and self-frequency shift (SFS) [10, 11]. The propagation of
the pulse envelope taking into account these higher-order effects 1s described by a
generalized nonlinear Schrodinger equation (GNLSE). This equation also possesses
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solutions in the form of solitons, but special requirements between parameters of
the medium and soliton are needed in order to preserve the original profile from
the pure Kerr dielectric [6, 12-16].

In the presence of strong soliton field the nonlinear permittivity of the
medium can deviate from the simple Kerr dependence revealing saturation. The
simplest description of this phenomenon consists in adding a small negative term
to Kerr formula, which gives a cubic-quintic model of saturation [20-22]. This
model enables analytical solutions of many problems involving non-Kerr media,
but in fact does not predict any saturation for large intensity. The other models of
saturation — two-level [17] and exponential [18] — guarantee the proper behavior
of permittivity for large intensity, but practically none of the problems in such
media cannot be solved analytically. The most promising is the square-two-level
model [19] with a proper large intensity limit and many analytical solutions. There-
fore this model of saturation will be applied in the paper. In fact, all discussed
models give very similar results far below saturation, so the application of any of
them is the matter of convenience.

The form of nonlinear polarization should affect all nonlinear terms in GNLSE.
Therefore, introducing saturation into GNLSE, we should include it also into the
higher-order terms [8, 23, 24]. The resulting GNLSE equation is possible to solve
for bright and dark soliton cases [23, 24]. The obtained solutions express the in-
tensity and phase profiles in a form of certain quadratures. In the presented paper
we expand the previous solutions to include grey solitons, whose propagation in
the generalized Kerr-like medium has not been analyzed yet.

2. Quadratures of intensity and phase

The nonlinear medium reacts to the traveling wave changing its own dielec-
tric permittivity € by enr,. Such response of the medium for Kerr-like materials

depends on light intensity I = |E|? and in a pure Kerr case is proportional to
intensity
ENL(I) = al. (1)

If the light intensity is sufficiently strong, the nonlinear permittivity deviates from
the above rule because of saturation. The square-two-level model [19] describing
this process gives the modified function (1) in the following form:
al(l+2I)I
= —— 2

ENL( ) 2(I+Is)2 ) ( )
where I is the parameter of saturation (limr_c enn(f) = als/2).

According to the introduction, the non-Kerr permittivity function enp(I)
(2) influences two other nonlinear terms in GNLSE [8, 17, 18, 20-24]. Neglecting
the linear third order dispersion effect and all processes in which energy is lost, we
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can write the GNLSE for the slowly varying envelope U(z,t) of the electric field
E(z,t) in the frame moving with the group velocity vy = dw/dk of the packet [23]

U | kg 0°U . ) 29 2
5z T3 am VU SgglenllURD)
d
U e (UP) =0 )

In this equation ks determines the group velocity dispersion, w is the carrier wave
frequency and 7 (real) is the retardation time.

Soliton solutions of the above equation characterize by the intensity profiles
not changing during propagation. Therefore such a profile depends on one coordi-
nate only in the frame propagating with the field envelope I(z,t) = |U(z,t)|? =
I(s). Defining T and 1/§2 as temporal and spatial widths of the pulse we have
= Lol (4)

Let us decompose GNLSE (3) into parts using intensity of the pulse and its phase

U(z,1) = V/I(5) exp [1’“72 (% - 92) 0T + igo(s)] . (5)

The additional terms in phase have been introduced in order to simplify the result-

S

ing equations. The equation for the phase can be integrating twice giving [23, 24]
(2T KF(I(s)) C
= S 1 1 - — ¢ ds. 6
o= [ {2 [+ vetren - D] 4 F s ()
In this expression C' is the constant of integration constants (L appearing in (5) is
another such constant), & is a combinedhigher-order corrections parameter
k=14wr, (7)

and F'(I) is an auxiliary function defined by means of nonlinear permittivity enxr, (1)

F(I) :‘/0 ENL(I)dI. (8)

The intensity function I(s) satisfies the equation that follows from GNLSE
if we eliminate the phase function. This equation 1s quite complicated and can be
integrated only once. Nevertheless the solution of the resulting ordinary first-order
differential equation can be written as quadrature

I

dr

s() = i/ 4r2G(1) | 2plF(I) 4CprF (1) ()
Io 2\/ sy 2 g1 - O 2

ﬁOzIK

In the above integral G(I) is another function depending on nonlinear permittivity

2

G(I) = i 11/15%‘%(1)& - (/IENL(I)dI) : (10)
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while ¢ and [k are the temporal width and Kerr intensity parameters

ko

«

(202 +w)1? ’ (11)

p 1s the sign of the ratio of group velocity dispersion coefficient to the constant of

q=(20 —|—w)2T2, Ik =

Kerr nonlinearity: p = sign(ks/a) = £1 and J is another constant of integration.
The quadratures (6) and (9) generalize similar solutions for bright and dark solitons
[23, 24], because the constant C' vanished in previous cases.

Taking into account types of media covered by solutions (6) and (9) we can
distinguish four special cases. The simplest is the case of the pure Kerr medium
with exp.(I) given by (1) and vanishing higher order terms in (3). To write the
solution for this case we should take the appropriate function F(I) and put ¢ — oo
(the ND term vanishes for w — oo, which gives infinite ¢). Leaving the terms
containing ¢ we arrive to the case of the generalized Kerr medium. For both these
cases we have
B al? B a?(k? —4)I*

— G(I) = — 19 (12)
Another functions F(I) and G(I) result for the square-two-level medium. Applying
ent(7) given by (2) to calculate (8) and (10) we have

_al’ It [(k?—4)L - 31 I?
P = 20+ 1)’ oD = 12:2(1 + I, )3 ' (13)

Introducing (13) into (6) and (9) we can obtain the case of saturable medium

(for ¢ — o0) and the most complicated generalized saturable case.

3. Grey solitons in Kerr and saturable media

The result of quadrature (9) depends on three integration constants L, C|
and J and the central intensity Iy = I(0). Their values should be established
by behavior of the solution at s = 0 and for s — oo, which depends on the
type of propagating soliton. Bright soliton [23] is obtained when L = —1, C' =0,
J = 0 with I remaining free, dark soliton [24] results when €' = 0 and Iy = 0,
while integral (9) with all non-vanishing terms describes grey soliton. In this case
two of these constants are fixed and two other remain free. But the constants of
integrations have no simple interpretation, so instead of them let us introduce two
more natural quantities characterizing soliton — the background level I}, and the
darkness 0 < w <1

Ib:sginoof(s), w= I (14)

In the pure Kerr case grey soliton solutions exist only for positive medium
sign coefficient p = sign(kz/«) = +1. Both integrations (9) and (6) can be easily
performed giving
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I(s)y=1, [ 1— ,
(s) b ( cosh? 5)

o(s) = ﬁ s+ arctan (E tanh 5) . (15)

For the above solution we have 2 =0, w = I'x /I, and L = 3/w—1. Such intensity
profile I(s) for w = 1/4 is illustrated by the dotted line in Fig. 1. The quite simple
form of the phase ¢(s) enables us to write the full envelope U(z,1)

Uz, t) = \/E(\/l — w+ Iy/wtanh(¢/T)) exp (1];27%2 + i \1/510%) . (16)
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Fig. 1. Intensity profiles of the grey solitons in Kerr, generalized Kerr, saturable, and
generalized saturable media. Two values of integration constant C' in GSatur medium
determine two dark-like solitons with central intensity /11 and I21 and two bright-like

solitons with central intensity /12 and I22 (dashed curves).

The solution in the generalized Kerr medium is a bit more complicated. In
this case grey solitons can appear not only for positive sign of ks/a, but also for
the negative sign case: p = 4+1 or p = —1. Moreover we can obtain two types of
grey solitons — normal dark-like with 0 < Iy < [, and upturned bright-like ones
with Iy > [,. For both these types the background level [, and darkness w are the
same, but their intensity and phase profiles are described by different functions

w
IS :I 1_ 3
(s) b ( cosh? s + o sinh? 5)

1_
o(s) = ( w)(o +w)s + arctan ( T—i— Y tanh 5)
w

w

N (6 +2)[w+ o(4 — w)] [ s arctan(y/o tanh 5)] ’

Vaw W Vo
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for the dark-like grey solitons, while for the bright-like case we have and

I(s) = I <1+ ° )

o cosh? s + sinh? s

o(s) = 0= wi}(a *ws — arctan (\ / ;—Z tanh 5)

<ﬁ+2>%I;§4—w>] [st + arctan (ta;?)] , (18)

In the above formulae ¢ is the additional broadening parameter. Both darkness w

_|_

and broadening o depend on material parameters: w = \/(2 —pA)2 4+ 22k /1y +
2—pA, 0 = w?l,/(2X k), where A = 3¢k /[2(4— %) Ip]. Thick solid lines in Fig. 1
illustrate intensity profiles of these two solitons. As we can see, the general shape
of these profiles are similar to the profile in the pure Kerr medium, however for
the assumed choice of the medium parameters their central intensities differ quite
significantly.

The functions (2) and (13) describing the saturable square-two-level medium
also enable us to perform integration (9) and (6) analytically. But even if higher
order terms in GNLSE (3) are rejected, the resulting function s(I), however quite
simple, will be irreversible. Consequently, the phase cannot be expressed as an
explicit function of normalized time coordinate s, but as a function of intensity

5= amanhwﬁ J_r ﬁsgit%; - ¢§Z J_FZJ arctanh ﬁ:js

. IO(IS+Ib) (I—Io)([s-FIb)
o(I) =4/ 715(113 — Io)arctanh\/(j_i_ T —1To)

I(I = Ip)
tanhy [ ———< 1
+arctan IO(I—I—IS)’ ( 9)

where the central value of intensity is Io = Is*(Is + Iv)/[IE + Tk (Is + Iv)?] — Ls.
Nevertheless we cannot reverse the intensity profile function s(7), it can be

plotted without any problems. This profile is given by the thin solid line in Fig. 1.
It is very similar to the profile in the pure Kerr medium, however saturation causes
intensity of smaller values. The similarity in shape means that the functions (19)
and (17) with properly tuned w and ¢ can be close. Indeed, for I, — oo the last
term in the function s(7) given by (19) vanishes and we can treat it as a small
perturbation. This interpretation enables us to include it inside the first arctanh
function. In this way we can reverse s(I) obtaining I(s) exactly in the form (17)
with w = 1—1Iy/I, and ¢ = (I, — Iy)/Is. As in the pure Kerr medium, grey soliton
exists only for positive sign of k2/a.
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The most complicated is the case of generalized saturable medium, but for
the square-two-level saturation the integrations (9) and (6) are also possible to
perform. The resulting intensity profiles s(7) in the dark-like and bright-like soliton
cases will be expressed by a combination of the elliptic integral of the first and

third kind [25]
+s = Ad[TQF(Hd(I), m) - H(Gd(I), /\dla m) + TdH(gd(I), /\d2, m)],
+s = Ay [H(Hb(f), —Ab1, m) + TbH(gb(I), Ab2, m)] (20)

In the above formulae 6, (7) for bright-like and 6q(7) for dark-like soliton
case are two functions of intensity, while 0 < m < 1 is the parameter of the elliptic
functions. They are defined by means of I, I}, and Iy, I;, and I being roots of a
certain third-order algebraic equation

_ . (I-I)(L + ) B ) (I — DIy + 1)
04(I) = arcsin ¢—(I L) (1= o) Op(I) = arcsin \/—(I (1= To)

(Ip + Is)(IL + 1)

The other coefficients Aq, Ab, ro, rd, b, Ad1, Ad2, Ab1, and Aps in (20) are given

. wﬁ — 1)L, - Ib) (21)

by square roots similar to those in (21). The quantity Iy and I; appearing in
all these formulae are central intensity I(0) of the dark-like and bright-like grey
solitons.

Note that the constant of integration C' appears in quadrature (9) in two
terms — one containing C? and the other with C'. Therefore trying to determine
we obtain two different values. Consequently, all quantities calculated later Iy, Iy,
m and so on, will be double! These double solutions corresponding to both dark-like
and bright-like solitons can be seen in Fig. 1 (dashed lines). All these lines are
similar to thick solid lines corresponding to solutions in generalized Kerr medium,
however we can observe that solitons in saturable medium are a bit wider. Also a
possibility to appear in media with p = —1 is exactly the same as in the unsaturable
case. But unlikely to that case, the profiles (20) cannot be reversed in the limit
Iy — o0.

The phase quadrature (6) are also possible to integrate analytically, but the
result can be expressed only as a function of intensity ¢ = ¢(I), analogously
to (19). This result has a similar form to expressions (20), however contains one
more elliptic function of the third kind 7 (#(1), A, m) in each formula. Note that
for two cases without saturation ¢(s) contains a term linearly changing with s
(see (15), (17), and (18)). The similar term also will appear in (19) if we elimi-
nate the first term of ¢(7) using s(7). Analogously we can prove that such linear
term appears also in the result of integration (6) for the generalized saturable
case. Therefore the phases of different solutions linearly diverge for s — Z£oo.
Consequently, phase profiles can differ significantly, even if solutions are close.
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4. Parameters of grey solitons

The solitons obtained in the previous section have parameters being func-
tions of a certain number of another quantities p, Ik, q, k, Is, and I,. Depending on
the type of medium, certain of these quantities can or cannot influence the soliton
parameters. Most of the relations between parameters in three simpler cases have
been reported throughout the paper, however their full discussion in all possible
regimes of values 1s very tedious. But in the generalized saturable case, however
we are able to write the relations between parameters in the form of polynomial
equations, the degree of resulting polynomials is quite high, so such formulae will
be very difficult to analyze. Therefore we shall discuss such relations only using
their graphical representation.

In Fig. 1 we observe the differences in central values of intensity in different
types of media. These differences change with the level of saturation I, which was
illustrated in Fig. 2. Naturally, the solitons in saturable media approach Kerr soli-
tons with increasing saturation intensity I5 both in the case with or without ND
and SFS (dotted and thick solid horizontal lines). But double dashed lines corre-
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Fig. 2. Central intensity [y of the grey bright-like (upper part) and dark-like (lower
part) solitons in different types of media versus intensity of saturation ;. Two values of

I for any I in GSatur cases determine two different soliton profiles (Fig. 1).
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Fig. 3. Central intensity Iy of the grey bright-like (upper part) and dark-like (lower

part) solitons in generalized Kerr and generalized saturable media as functions of non-

linear corrections.

sponding to solitons in generalized saturable medium appear only for a sufficiently
large saturation intensity /g > I nin. The same property reveals solitons in ordi-
nary saturable medium, but for them I i, 1s much smaller. Note that dark-like
solitons decrease their height while bright-like ones increase it with decreasing I
(this property does not apply to the regime Is & Igmin in the generalized saturable
case). For larger saturation levels one of the bright-like solitons has its height
smaller and the other one greater than the height of the generalized Kerr soliton,
while heights of both dark-like solitons are smaller than a height in generalized
medium.

The lines in Fig. 3 illustrate how the central intensities depend on higher-order
correction parameter . This time we show only lines obtained in generalized me-
dia, because the asymptotic case of the medium without ND and SFS result for
K — o0 and ¢ — oo. As in Fig. 2 there is a minimum value £, below which soli-
tons in generalized saturable medium cannot exist. In the generalized Kerr medium
there 1s a similar minimum for the dark-like solitons, but for the bright-like ones the
relation Iy(x) is completely different — solitons appear only for || < 2. Therefore
we can meet the situation when only dark-like, only bright-like or both solitons
appear in such medium.
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Fig. 4. Central intensity [y of the grey bright-like (upper part) and dark-like (lower
part) solitons in generalized Kerr and generalized saturable media as functions of tem-

poral width.
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Fig. 5. Propagation of perturbed grey soliton with tuned linear chirp. Iy increased 5%,
width decreased 4%.
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The behavior of central intensity as a function of temporal width ¢ 1s similar
(Fig. 4). In the generalized saturable medium we also obtain a minimum value gy .
But in the generalized Kerr case one property changes — there is no maximum ¢
for the bright-like solitons. Therefore such solitons with any temporal width can
exist.

For both generalized Kerr and saturable media we can write the conditions
determining the discussed minimum values Igmin, Kmin, and ¢uin in the form of
polynomial equations. But the order of these equations (at least for saturable case)
is very high, so we can obtain such values only numerically.

Grey solitons are generally unstable. They are very sensitive with respect
to phase modifications. Therefore if we modify its height or width, the obtained
pulse will not propagate stably, because its phase profile is wrong. But tuning
the pulse width to its changed height and applying additional linear chirp we can
significantly stabilize it. In Fig. 5 we show how such modified pulse propagates over
a long distance. Its central intensity and width pulsate, the background intensity
diminishes and group velocity changes, but all these modifications are quite small.
The presence of saturation in medium stabilizes the propagation only slightly —
pulsations of height and width are smaller, but changes of the other quantities
remain almost the same.

5. Summary and conclusions

The additional terms describing nonlinear dispersion and self-frequency shift
extend the class of mediain which grey solitons appear. In generalized media taking
these effects into account solitons can exist for both possible signs of ks/«. The
class of solitons 1s also extended — we obtain ordinary dark-like and upturned
bright-like solitons. The additional saturation of the medium causes that the cen-
tral intensity and all other parameters of both dark-like and bright-like soliton can
assume two possible values. All these properties can be seen in Figs. 1-4.

In generalized media even with saturation we can obtain quadratures describ-
ing both the intensity and phase profiles of grey solitons. These quadratures give
analytical formulae for the square-two-level model of saturation. The simpler cases
of the media without saturation or without higher-order terms also give analytical
expressions for the intensity and phase profiles. The resulting intensity shapes are
quite similar, however parameters of solitons depend on material parameters and
are different in different media. On the other hand, the phase profiles, even when
the shapes of solitons are similar, can differ quite significantly.

In generalized saturable media the possible level of saturation I, higher-order
corrections parameter x, and temporal width parameter ¢ cannot be too small.
The analogous restriction in generalized Kerr medium appears only for dark-like
solitons. Generally, the presence of saturation diminishes a height of resulting
solitons.
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The obtained solitons are unstable, mainly with respect to phase modifica-
tions. Nevertheless, by applying properly chosen linear chirp we can significantly
stabilize them (Fig. 5).
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