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Photorefractive Multiple Quantum Well
Waveguide as a Bragg Reflector
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An interaction between the signal wave propagating in a planar wave-
guide and a photorefractive grating is analysed. The waveguide contains an
AlGaAs/GaAs multiple quantum well guiding layer biased with an external
electric field applied along the wells plane. The grating is formed by two ex-
ternal beams interfering in the multiple quantum well layer. The dependence
of the steady-state grating properties on the external waves parameters and
applied electric field intensity is presented. Possible application of the grating
as an optically controlled Bragg reflector with memory is analysed.

PACS numbers: 42.65.-k, 42.65.Pc

1. Introduction

A photorefractive grating in semi-insulating multiple quantum well wave-
guide can be used as an optically induced mode coupling element with memory
[1]. The grating, created by two mutually coherent waves interfering in a nonlinear
material, can be used for the same purposes as stable or electro-optically induced
grating, but it can be tuned in a real time by varying parameters of the inter-
fering waves. The grating does not require a permanent presence of the writing
beams, which are necessary only for writing, refreshing, or erasing the grating.
The amplitude of the grating can be high enough to influence signals propagating
in the waveguide. The signal waves with low frequency do not destroy the grating
and the system may have applications as an all-optical switching element with
memory.

Here we analyse properties of the photorefractive grating designed to serve
as a Bragg reflector. The grating is induced in a single-mode planar waveguide
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containing semi-insulating multiple quantum well (MQW) structure as a guiding
layer. The MQW structure operates in so-called transverse Franz—Keldysh geom-
etry [2] with an external electric field applied along the quantum well planes as
shown in Fig. 1.
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Fig. 1. Photorefractive MQW waveguide geometry.

The grating is created by two mutually coherent external beams of the same
polarization falling on the surface of the sample. The interference between the
beams overlapping in the MQW layer gives the intensity pattern described by

I(x,z) = Iyexp(—az)[1l + mcos(K z)], (1)

where Iy = I + Is denotes a total intensity of the beams at the entrance to the
MQW layer, « is the absorption coefficient, m is the modulation depth (fringe vis-
ibility) given by m = 2(1;15)/?/Iy. The grating constant K depends on incidence
angles and for #; = > = 8 is given by

K = 2npkexsind,

where n, denotes the refractive index of the outer medium and kex — the wave
vector of the external beams. A high frequency light creates electron—hole pairs
by direct interband transitions. Free carriers move and finally recombine to the
donor traps mainly in the dark regions of the interference pattern, creating a
spatially modulated charge distribution. Non-uniform charge distribution builds
up a space-charge electric field which changes the refractive index through the
electro-optic effect [3, 4].

2. Properties of the waveguide

The structure of the waveguide is shown in Fig. 2. The photorefractive
MQW layer contains sixty periods of 7.5 nm thick GaAs wells and 10 nm thick
Aly 3Gag 7As barriers. The guiding layer is sandwiched between two Alg 24Gag 76As
covers and deposited on the GaAs substrate. A thin protecting GaAs layer is placed
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on the cover. The wavelengths of interacting beams are chosen according to the ab-
sorption and electrorefraction spectra of MQW [1]. The guided modes reading the
grating are assumed to have the wavelength about 850 nm to obtain relatively low
absorption and possibly high electro-optic coefficient. The structure is designed to
form a single-mode waveguide for such wavelength. The effective refractive index
N and transverse field distribution of the fundamental TE; mode (presented
in Fig. 3) are calculated using a commercial software [5] based on transmission

matrix method.

protecting layer GaAs = 20nm

0.2 um Cover Aly24GagrsAs n=3.51

1.05 um Film  (MQW) n=3.548 | 60 x
A
A 10 nm Aly3Gag7As

7.5 nm GaAs

25pm | Buffer  AlgsuGagreAs mp=3.51

Substrate  GaAs n=3.62

Fig. 2. Cross-section of the waveguide.
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Fig. 3. The field profile of the fundamental TEy mode.

An average refractive index of MQW structure can be determined from the

formula [6]:

= (ML £ 02l ) (2)
" Ly Ly ’

where ny, and np denote the refractive indices and L., L, the thicknesses of
wells and barriers, respectively. The field distribution and the effective refractive
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index obtained for a uniform layer of ns placed between the covers are practically
identical as for the full structure.
The grating constant necessary to obtain Bragg reflection [7, 8] is

K = 2kg Neg cos p, (3)

where kg = 27/Aq is the free-space wave vector of the signal beam, Neg is the
effective refractive index of the signal mode and ¢ is the signal beam incidence
angle. The required grating constant is so large (for a normal incidence K =
5.232 x 105 cm~! which corresponds to space period A = 27/K = 0.12 um) that
the external beams have to enter the sample by a prism with the refraction index
satisfying the following condition:
//\\% - cos @ (4)
where 6 is the incidence angle of external waves. For the backward reflection (¢ = 0)
the prism should have the refractive index higher than 2.63, which can be obtained
using materials like rutyl (TiOs) or one of the semiconductors transparent for the

Ny = —_—
P sind’

external beams wavelength (e.g. GaP).

3. Space-charge electric field

The amplitude of the grating depends on the amplitude of the space charge
electric field pattern which can be obtained from one-dimensional transport equa-
tions [9]. If thermal excitation and direct recombination of the carriers are not
included, the equations for MQW planes perpendicular to the z-axis and the elec-
tric field applied along the z-axis take the form [1]:

on « 195
© = —1I— e eN+ -==
ot hv Telt D+e@z’ (5)
onn o + 1 Ojn
o = ! T NN = T ©
Je = epencE + ﬂekBTaaze , (7)
. 677,}1
Jh = epnnnF — NthTa—, (8)
z
ONG
51 = mn(Np = Nf) = yene N, (9)
OF e
EZE(NS—FR}]—RG—NA), (10)
where n. denotes the free electron and ny — the free hole concentration, Np —
donor, N]')" — ionised donor, Ny — acceptor concentrations, jo — the electronic

and jn — the hole current densities, ' — the total electric field (F = E, + Fge,
where Fy is a space-charge field and Fj is an external field), I — the light intensity,
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ve and 7, — electron and hole recombination constants, pe — electron and py, —
hole mobilities along the quantum wells, ¢y — the vacuum permittivity, ¢ — the
effective dielectric constant of MQW structure, e — the elementary charge value,
kp — the Boltzmann constant and 7" — the absolute temperature. The transverse
carrier mobility is neglected due to the high difference between longitudinal and
transverse mobilities characteristic of MQW structure.

Under the steady-state conditions and for light intensity given by (1) the
space charge field can be presented in a form of the Fourier series [1, 10]:

E(z) = Ea+ mEy exp (iKz) + m? Eqexp (12K 2)
+mPEzexp (13Kz) + ... (11)

where Fq, Es, Fs, etc. are generally complex numbers due to the arbitrary phase
shift with respect to the interference pattern. Modules of the first three Fourier
components as functions of the applied electric field are plotted in Fig. 4. For
the considered grating constant the amplitude of the first harmonic is nearly two
orders of magnitude greater than the second and about three orders of magnitude
greater than the third one. Therefore the influence of the higher order terms on
the propagation of guided modes can be neglected.
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Fig. 4. The first three harmonic components amplitudes versus the external electric
field for A =0.12 pm and Np = 2 x 10*® cm 2.

The dependence of the first Fourier amplitude on the applied electric field for
various trap concentrations is shown in Fig. 5. Because of the small grating space
period a high trap density is necessary to obtain the increase in the space-charge
field amplitude with an external electric field. For example for trap density of
2 x 10'® ¢em™3 the applied field of 10 kV/cm can increase the space charge field
from 280 V/em to about 350 V/cm. The phase shift between the first Fourier
component of the space charge field and the light pattern as a function of an
external electric field is depicted in Fig. 6. Without the applied field diffusion plays
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Fig. 5. The first order amplitude E; versus an external field for three different traps
densities.
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Fig. 6. The phase shift between the space charge field and the light pattern versus an
external field (phase shift is independent of the trap density).

the most important role in carrier transport and the space-charge field is shifted
by 90 deg with respect to the interference pattern [11] (£} is purely imaginary).
For high intensities of the applied field drift mechanism becomes more important
and phase shift decreases in the considered case (F, = 10 kV/cm) to about 50 deg.

Time evolution of space charge field was found by numerical solution of
Egs. (5)-(10) with the Runge-Kutta method. The dependence of space charge
field amplitude on the absorbed energy of the light beams with constant intensity
is shown in Fig. 7. Time evolution of the space charge field driven by Gaussian
pulses is presented in Fig. 8. The first pulse, consisting of two interfering beams,
records the grating and the second one, being a single uniform beam, erases it.
The grating lifetime after switching off the external illumination depends mainly
on the dark conductivity of the material and for semi-insulating MQW structure
can be much longer than the recording time.
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Fig. 7. The amplitude F7 as a function of external beams energy for the sample with
no external electric field and for applied field of 10 kV /cm.
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Fig. 8. Time evolution of the first Fourier component of space charge field for two
short pulses of light with the intensity amplitude Iy = 0.1 W/cm?. Pulse 1 is writing

the grating and pulse 2 is erasing it.

4. Efficiency of the grating as a Bragg reflector

A sum of the applied electric field and spatially modulated space-charge
field induce the refractive index change, which can be described by a quadratic

electro-optic effect. The refractive index change in MQW structure can be approx-
imated by [4]:

An()) = (=1/2)nds(\)E?, (12)
where ny is an average index of the MQW structure, s(}) is the quadratic electro-
-optic coefficient and E = E, 4+ Fs is the total electric field. The electro-optic
coefficient for wavelength of 850 nm is in the range of 2 x 1073 em?/V? [1]. For

the electric field Fs(z) = F1(z) = |E1|cos(Kz + ¢1) the refractive index change
can be written as sum of three elements
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An(A, z) = Ang(A) + Ang(A) cos(Kz + ¢1) + Ana(A) cos(2K 2z + ¢2),  (13)
where Ang(A) is proportional to the average electric field E2+(1/2)|E1]?, Any(})
is proportional to E,|F;| and the last component Ans(A) to (1/2)|F1|%. For E;
much smaller than FE, the last term can be neglected and the refractive index
grating amplitude is

Any = —ndsE,|Fy). (14)
The dependence of the refractive index amplitude on the applied electric field for
different trap concentrations is shown in Fig. 9.
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Fig. 9. The refractive index grating amplitude versus an applied electric field for the

grating space period of 0.12 pm.

For the normal incidence of the signal wave on the periodic structure the am-
plitude of the reflected wave, in the case of the grating constant perfectly matched
to the propagation vectors difference, is given by [7]:

Ap(0) = Agtanh(x L), (15)
where Ay denotes the amplitude of the incident mode for z = 0, Ap(0) — the
amplitude of the backward mode for z = 0 and L — the length of the grating.
The coupling coefficient y, describing interaction between the signal mode and the
reflected mode, can be calculated from the following formula:

2ng [} |Ey(e)|2de 16)
K (% |E,(z)]2dz’

where kg 1s the free-space wave vector of the signal beam, h is a thickness of the
MQW layer and Ey(z) is a transverse field distribution of the guided mode. The
amplitude of the refractive index grating calculated for the parameters listed in
Tables I and I is An; ~ 3 x 107>, The coupling coefficient is directly proportional
to the refractive index amplitude and for the described waveguide is about y =
1.2 ecm™!. Dependence of the reflection coefficient R = Ag(0)/Aq on the length of
such a grating is plotted in Fig. 10.

k
X =An
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TABLE 1

Parameters used in study of the space-charge field amplitudes.

fte = 5000 cm?/(V s)
pn = 300 cm?/(V s)
Ye =y = 10" cm? /s
m =1

ny = 3.548

e =n? =12.586
r=Na/Np =05

K =5.232%x10° cm™'

A =012 pm

the electron mobility*

the hole mobility*

the trapping coefficient™

the fringes visibility

the average refractive index of the MQW layer
the effective dielectric constant of MQW layer
the compensation ratio of donors traps

the grating constant

the fringe spacing

Fig. 10.
length.

*Values of carrier mobilities and trapping coefficient were derived from [10].

TABLE 11

Parameters used in study of grating amplitude and reflection coefficient.

s=2x 107 cm?/V?
E, =10 kV/cm
Np=2x10" cm™
r=Na/Np =05

Ag =850 nm

Aex &= 630 nm

o 2210* cm™?

the quadratic electro-optic coefficient
the
the
the
the
the
the
the
the
the MQW thickness

external electric field

donors trap density

compensation ratio of impurities
wavelength of signal wave

wavelength of writing waves

absorption coefficient of the writing wave
total average intensity of the writing beams

effective refractive index for TE¢ mode

Io = 0.1 W/cm?
Neg = 3.54
h =1.05 pm
1
0.75
<
= 05ip
&
<
0.25
. I

Grating length  [mm]

The normalised amplitude of the reflected mode, Ag(0)/Aq, versus the grating
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5. Conclusions

The results of calculations show that the photorefractive grating in semi-
-insulating MQW waveguide operating with the electric field of 10 kV/em applied
along the QW planes can be used as an optically controlled Bragg reflector with
memory. The amplitude and the space period of the grating depend on the external
waves parameters and can be tuned during the work of the device. Short grating
space period necessary to obtain backward reflection require high concentration of
traps in MQW structure (about 2 x 10'® cm~3) which can be obtained by proton
implantation [12].
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