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Th e paper discusses inÛuence of polari zation mode disp ersi on on per-
formance of p olarimetri c systems with hi ghly biref ringe nt Ùbers. I t app eared

that polarizati on mode disp ersio n strongly inÛuences a degree of polariza-
tion that dep ends on coherence of the light source used and simultaneousl y
dimini shes dynamics of the output signal.
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1. I n t rod uct io n

Polari zati on e˜ects in opti cal Ùbers were recognized many years ago and have
been used in devel oping polarim etri c sensors uti l izing highl y bi refri ngent (H B)
polari zati on-mainta ini ng (PM) Ùbers [1]. However, in tel ecomm uni catio n they have
ini ti al ly played a minor ro le in the developm ent of l ight wav e system s as long as
sing le channel bi t- rates were below 2.5 Gbi t / s. Due to enorm ous increase in opti cal
path lengths and also increase in bi t rates in digi ta l systems beyond 10 Gbi t/ s, i t
app eared tha t a new obstacle, kno wn as polari zati on m ode di spersion (PMD ), is
regarded as a m ajor lim i tatio n in opti cal tra nsmission systems in general and an
ul ti m ate l imi ta tio n for ul tra -hi gh speed sing le channel system s based on standard
sing le m ode Ùbers.

The degree of polarizati on (D OP) of the l ight pro pagati ng in an HB opti cal
Ùber dim inishesalong the pro pagati ng distance. Thi s e˜ect is of parti cul ar interest
since com monly used quasi-m onochro mati c semiconducto r laser sources are not
perfectl y coherent. It has been shown [2, 3] tha t the D OP m easurement can be
used to determ ine the coherence characteri stics of laser di odes. Thi s issue is of
great interest not only in tel ecom muni cati on appl icati ons but also in polari m etri c
sensors wi th HB Ùbers.
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The paper di scusses the importa nce of PMD in HB Ùbers in compari son
to sing le-m ode tel ecom Ùbers and also addresses the pro blem of D OP f ading in
polari metri c Ùber opti c system s wi th HB Ùbers. Some recent exp erim enta l resul ts
of the m easurements of di ˜erent polari zati on characteri stics for HB Ùbers wi th
intri nsi c but also wi th dyna m icall y contro l led bi ref ringence are also presented.

2. O r ig in of p ol ar izat ion m ode di sp er sion i n opt ical Ùber s

Polari zati on m ode dispersion ori ginates f rom the interna l bi ref ringence due
to either asym m etry of the Ùber opti c cro ss section or anisotro pic stresses acti ng
on the core of the Ùber. Asym m etry is caused by the fact tha t the Ùber core is
slightl y not round or ell ipti cal . W hen the core of the Ùber is asymm etri cal , the l ight
polari zed along a bi refri ngence axi s moves slower tha n the l ight polarized along
the ortho gonal axi s. In real sing le-mode Ùbers, whi ch possess nonzero interna l
bi refri ngence, both ortho gonal ly polari zed m odes have random ly di ˜erent phase
vel ociti es, causing Ûuctua ti ons of the polari zati on state of the l ight guided in the
Ùber. Thi s e˜ect can spread the pul se enough to make i t overl ap wi th other pul ses
or change i ts own shape enough to make i t undetecta ble at the receiver.

Since opti cal Ùbers al low very large propagati on distances even very small
bi refri ngence e˜ects can cum ulate along Ùber and thei r random di stri buti on over
the large lengths causes polari zati on properti es of guided l ight general ly di £ cul t
to determ ine. It concerns both the state and the degree of polarizati on, and con-
sequentl y PMD is a stochasti c process.

Polari zati on m ode dispersion, usual ly expressed by di ˜erenti al group delay
(D GD) over the length of the Ùber Â § =L and m odal bi refri ngence Â Ù are the
m ost im porta nt param eters characteri zing bi refri ngent Ùbers. Both param eters
are interrel ated accordi ng to the fol lowing form ula:
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where Â § =L i s usual ly expressed in uni ts of picoseconds per ki lometer of Ùber
length, Â n e˜ is the di ˜erenti a l e˜ecti ve index of refracti on for the slow and fast
polari zati on modes, and ! = 2 ¤ c= Ñ i s the angul ar frequency of l ight.

For the HB bow-ti e Ùbers in whi ch bi refri ngence is caused by stress appl yi ng
parts intro duced in cl addi ng close to the core region of the Ùber, Â n e˜ i s nearl y
wa vel ength independent and the chro m ati c dispersion of the modal bi refri ngence
is negl igibl e. Hence for thi s typ e of Ùbers measurements of bi refri ngence and PMD
are equivalent
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where L B i s beat length expressed as

L B = 2 ¤ = j Ù y À Ùx j (3)
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and responsible for phase di ˜erence changes along the HB Ùber. The spati al period
L B of these changes reÛects the m odul atio n in the polarizati on states along the
Ùber [1]. Li nearl y polari zed l ight coupl ed into the HB Ùber wi th pl ane of polariza-
ti on di rected at the angle of 45 degrees between both axes of bi refri ngence becomes
el lipti cal polarized and next circul ar, ell ipti cal, l inearl y ortho gonal , ell ipti cal, ci r-
cul ar, ell ipti cal and Ùnal ly the same l inearl y polari zed and oriented as intro duced
into Ùber. Typi cal values of PMD for HB Ùbers are cl ose to 1000 ps/ km , tha t
is four orders of m agnitude hi gher in comparison to 0.1 ps/ km (typi cal values of
PMD for tel ecom muni cati on Ùbers).

In opti cal Ùber system s inÛuence of PMD on the system perform ance can
be estimated by detecti ng changes in degree of polari zati on (D OP) of the l ight
passing thro ugh the Ùber. In general , PMD dim inishes D OP of l ight tha t depends
on coherence of the l ight source. Fi gure 1 presents schemati cal ly inÛuence of PMD
in both: tel ecom and HB Ùbers.

Fig. 1. Schematic representation of D OP degradation by PMD ; upp er: single- mod e

(SM ) telecom Ùbers w ith low PMD, low er: H B Ùbers w ith high PMD.

Accordi ng to Born and W olf [4] the l ight in whi ch the wa vel ength range Â Ñ

i s smal l com pared to the m ean wa velength

Â Ñ=Ñ § 1 or Â ! = ! § 1 (4)

is cal led the quasi m onochro mati c l ight. T o describe and analyze polarizati on
phenom ena in such a case the Sto kes vecto r and the Muel ler m atri x form ali sm are
necessary.

In the Muel ler{ Stokes f orm al ism, the Stokes param eters have a simpl e phys-
ical interpreta ti on and are related to intensi ty m easurements. It is thus useful to
gather these param eters in a f our-component arra y, the Sto kes vecto r (S):
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where S 0 ; S 1 ; S 2 ; S 3 are the Stokes vecto r parameters, I ( S ) = I + I

( I signiÙes polari zed, and I unp olarized l ight, respecti vel y) is the to ta l l ight
intensi ty , I x x = h E x E x i ; I x y = h E x E y i ; I y y = h E y E y i ; I y x = h E y E x i , and is
the electri c Ùeld vector.

The D O P can be stra ightf orw ardl y deÙned by the Sto kes param eters as:

D O P =
I

I
=

p
S + S + S

S
: (6)

Apa rt from l inear (i ntri nsic or induced) bi refri ngence opti cal Ùbers are also
characteri zed by nonl inear e˜ects associated wi th nonl inear bi ref ringence tha t can
also inÛuence polari zati on m ode dispersion [1, 5].

No nl inear or self- induced bi refri ngence rel ies on the nonl inear coupl ing be-
tween the ortho gonal ly polarized com ponents of an opti cal wa ve tha t changes the
ref racti ve index by di ˜erent am ounts of Â n x and Â n y due to nonl inear contri bu-
ti ons
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where n i s the nonl inear- index coe£ ci ent given by the form ula
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and deÙned by one com ponent of the 4-rank nonl inear susceptibi l i ty tensor com -
ponent â â â â â . In the case of silica Ùbers, where the dom inant nonl inear con-
tri buti on is of electronic ori gin, the nonl inear- index coe£ cient has a value of
3 : 2 È 1 0 m / W .

As the wa ve propagates along the Ùber, it acqui res an intensi ty- dependent
nonl inear phase given by
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The Ùrst term in the brackets is responsibl e for self-pha se modulati on (SPM), whi le
the second term results from the phase modulati on of one polari zati on (wa ve) by
the co-propagati ng ortho gonal polarizati on (wa ve) and is responsibl e f or so-cal led
cro ss-phase modul ati on (XPM). The XPM- induced nonl inear coupl ing between
the Ùeld components E x and E y creates nonl inear bi refri ngence tha t changes the
state of polari zati on (SOP) i f the input l ight is el lipti cal ly polarized. The nonl in-
ear coupl ing between the two ortho gonal ly polari zed com ponents of the opti cal
wa ve is ref erred as nonl inear or self-induced bi refri ngence and has many devi ce
appl icati ons.

By choosing an appro pri ate pul se power and shape, the e˜ects of chro matic
di spersion and SPM can be balanced and thi s is an opti cal sol ito n. Opti cal sol i tons
are not only robust to chrom ati c dispersion but also to di sturbi ng e˜ect of PMD .
The two ortho gonal polarizati on states tha t are di ˜erenti al ly delayed as an e˜ect of
PMD , induce a nonl inear phase shift by the cross-phase m odul ati on tha t m utua ll y
shi fts one another ' s frequenci es in opp osite di recti ons. Thro ugh the chro matic
di spersion, the tw o polari zati on states wi l l have di ˜erent speeds tha t countera ct
the PMD . Thi s phenom enon is cal led sol i ton- tra ppi ng and wo rks opti mall y in HB
polari zati on-mainta ini ng Ùbers [5].

4 . Exp er im ental r esu l ts

W e have constructed the polari zati on analyzing system PAS- 1 described else-
where [6] to measure the state and the degree of polari zati on of the output l ight.
The semi-auto mated polari zati on analyzing system can measure four l ight intensi -
ti es, for four di ˜erent arrangements of the analyzer and the quarter wa ve pl ate and
then auto mati call y calcul ates four Sto kes vecto r components along wi th intensi ty
of the output light as well as i ts D OP param eter.

Fig. 2. Exp erimental setup to in vestigate polarizati on e˜ects in the biref ringent sys-

tems.

Fi gure 2 shows the experim enta l set-up for polarim etri c m easurements of the
bi refri ngence opti cal Ùbers. The l inearl y polari zed l ight is launched into the bow- ti e
HB 600 Ùber and then is analyzed by the PAS-1 polari meter. The polarim eter was
also connected to a computer, whi ch calcul ated the D OP param eter. T oshiba laser
di ode (TOLD -9321) operati ng at 670 nm wa velength was used as a l ight source
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Fig. 3. Polarization phenomena in biref ringe nt systems w ith di˜erent H B Ùbers.

Fig. 4. Output signal as a function of the output polarizati on for di˜erent conÙgura-

tions of the LC F (1335- 1; 5 cm long) and the rotated H B Ùber (50 cm long), and for

di˜erent directions of the input polariz atio n.

and di ˜erent typ es of HB Ùbers have been exam ined. These incl uded standard
sil ica bow-ti e HB Ùbers but also l iquid-crysta l Ùbers (L CFs) wi th ell ipti cal core in
whi ch bi refri ngence changescan be dyna m ically induced and contro l led. There was
a possibi l i ty to coupl e separated sections of di ˜erent bi ref ringent Ùbers and also to
rota te one of the bi refri ngent Ùbers along i ts longitudi na l axi s as i t is schemati cal ly
presented in Fi g. 3. Fi gure 4 presents results of polarizati on m easurements in whi ch
an ell ipti cal -core (4 È 1 8 ñ m ) anisotro pic LCF of the length c a: 5 cm was connected
to the HB bow-t ie Ùber (about 50 cm long) and both Ùbers were pl aced between
cro ssedpolari zers whereas thei r polarizati on characteri sti cs were inv estigated. The
LCF characteri zed by hom ogeneous tra nsverse ori enta ti on of LC molecules has a
pro perty of sing le-polari zati on m ul tim ode propagati on. The who le manufacturi ng
pro cess of the LCF was described elsewhere [7] and the photo graph of the who le
PAS-1 system is shown in Fi g. 5.
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Fig. 5. Measurement apparatus PA S-1 to investigate p olarizati on and depolari zatio n

e˜ects in biref ringent Ùbers.

The issueof D OP fadi ng of the l ight passing thro ugh the HB Ùbers as wel l as
inÛuence of coherence of a l ight source is of the highest importa nce in polari m etri c
Ùber opti c sensors.

W hen a HB- 600 sing le-m ode bow-ti eÙber coupl ed to the TOLD -9321 T oshiba
laser di ode (670 nm ) was used, interesti ng e˜ects have been observed. Fi rst, D OP
of the l ight coming out of the Ùber signiÙcantl y decreased wi th the Ùber length.
As i t can be seen in Fi gs. 6 and 7 a m inimal value of DOP is cl ose to 0.6 (0.3 m
long Ùber) whi le i t is close to 0.2 for a m uch longer Ùber (100 m ).

Fig. 6. Sto kes parameters and DO P at the output of a 100 m H B- 600 bow-tie Ùber

coupled to a laser dio de (6 70 nm, TOLD- 9321 Toshiba).

Fig. 7. Stokes parameters and DO P at the output of a 0.3 m H B- 600 b ow-tie Ùber

coupled to a laser dio de (670 nm, TOLD- 9321 Toshiba).
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Fig. 8. DO P (input polarizati on directed at 45
£ in resp ect to biref ringenc e axes) as a

function of the Ùber length for a H B- 600 Ùber coupled to T OLD- 9321 Toshiba LD.

Fi gure 8 shows a m ini mal value of D OP as a functi on of the Ùber length.
For a smal ler Ùber length the D OP of the l ight has increased. W e have roughl y
estim ated a decay of D OP along the Ùber intro duci ng a coe£ cient tha t deÙnesthe
slope of l inear regression:

˜ D O P =
Â P DOP

Â L
¿= À 0 : 1 5 ; (12)

where P DOP i s the value of DOP and L is the length of HB Ùber.
Otherwi se, when a HB- 600 sing le-m ode bow-ti e Ùber wa s coupl ed to He{ Ne

laser, the DOP of the l ight was constant for a measured Ùber length. Mo reover,
long coherence length causes tha t the propagati ng l ight does not loose polarizati on
pro perti es, and the polarim etri c sensors have a large signal dyna m ics. For a short

TABL E
Comparison of polarizati on prop erties of single- mo de low-biref ringence (LB) telecom

Ùbers and p olariza tion -main taini ng (PM) H B Ùbers.

Telecom LB Ùbers PM H B Ùbers

Beat length L B ¿ 10 m, random L B ¿ 1 mm, w ell- deÙned

biref ringence axes biref ringence axes

Coherence of the light not so imp ortant very imp ortant

source

First- order PMD ps km ps/km

(1 ps/m)

PMD impact Limits bit rate Limits dynamics

(low ers DO P)

PMD comp ensation Dynamic (f eedback) Static

control of biref ringence & axes: (e.g. £ splice)

H B, LC Ùbers



Pol ar izat ion Mo de Di spersion in Bi refr ingent Opti cal Fi bers 219

coherence length source (i .e. laser diode), the pro pagati ng l ight looses pro perti es
of polarizati on. Thi s phenomenon intro duces a regim e to a Ùber length for the
polari metri c sensors.

Then, the fal l of the DOP parameter wa s parti cul arly signiÙcant for angles
cl oseto 4 5 £

Ï 9 0 £ in respect to bi refri ngence axes of the HB Ùber. These both e˜ects
can be attri buted to a l im ited value of the coherence length tha t characteri ze the
laser di ode used in the m easurem ent and also linked to PMD of the Ùber as i t was
suggested elsewhere [8].

At the end, we present the T able tha t com parati vely summ arizespolarizati on
pro perti es of standard single-mode low-bi refri ngence tel ecom Ùbers wi th highl y
bi refri ngent polari zati on-maintai ning Ùbers.

5. Co n cl usion s

T o conclude, we have di scussed the phenomenon of polari zati on mode di s-
persion in opti cal Ùbers characteri zed by intri nsic bi refri ngence, both l inear and
nonl inear measured selected polari zati on param eters of bi refri ngence opti cal Ùbers
in com pari son to standard tel ecom single-m ode Ùbers. It appeared tha t bi refri n-
gence system s com posed of ell ipti cal -core LCFs and \ solid-core" HB Ùbers exhi bi t
good polari zati on-maintai ning properti es tha t signi Ùcantl y dependent of the co-
herence length of the l ight source used. The long-term aim of these studi es is to
pro pose an e£ cient system wi th dyna mically- contro ll ed bi refri ngence to com pen-
sate polarizati on-m ode dispersion in opti cal tel ecom muni cati on and in Ùber-opti c
sensing appl icati ons.
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