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The purpose of this paper is a description of the dispersive dielectric
medium, both linear and nonlinear, from first principles using the field the-
oretic methods based on the Feynman path integrals over classical trajec-
tories. The main idea is to use notion of effective fields, in the present case
the electromagnetic field modified by presence of a polarizable medium. In-
teraction of the field with the medium on the microscopic level is described
by a modified Hopfield Lagrangian containing terms corresponding to the
electromagnetic field, the matter polarization field modelled by harmonic
oscillators with some resonance frequency and other matter fields describing
the degrees of freedom responsible for absorption in the medium (reservoir
fields). The polarization field is coupled both to the electric field and the
reservoir fields. Effective theory is obtained by elimination of the matter de-
grees of freedom which is achieved by functional integration over all matter
fields. For a linear medium all calculations can be done exactly leading to the
effective Lagrangian from which, among others, an expression for frequency
dependent dielectric constant can be extracted. Explicit form of the dielec-
tric constant depends on the way by which the polarization field couples to
the reservoir fields. In particular, uniform coupling to all reservoir modes
gives the standard Lorentz oscillator model, and for any type of coupling
the Lorentz form of dielectric constant is retrieved for frequencies close to
the resonance. For weak damping the dispersion w(k) is little sensitive to
the form of coupling leading to polariton modes not different from those of
the Lorentz model. It is also outlined briefly how the functional integration
method could be used to description of nonlinear effects in the medium.

PACS numbers: 42.65.-k, 12.20.-m

1. Introduction

The purpose of this paper is to present a model of the dispersive dielectric
medium, both linear and nonlinear, based on field theoretical method of integration
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over classical histories of a physical system, i.e. Feynman path integrals [1, 2].
The main idea behind application of this method to the description of polarizable
media is that on the macroscopic level electromagnetic field in a dielectric medium
is an example of an effective field, where the external electric field is modified by
polarization of the medium. It is therefore an important question how this bulk
material effects can be accounted for taking microscopic Lagrangian of the medium
and electromagnetic field as starting point. There is a wide body of literature
dealing with this issue; the approach presented here 1s based on the Hopfield model
[3], which has been extended to include damping by Huttner and Barnett [4]. In
this last paper the full quantum theory was developed based on the method of
canonical quantization. The main goal i1s to eliminate matter degrees of freedom
corresponding to the polarization of the medium and to damping modes described
by a set of harmonic oscillators coupled to the polarization field. This program
has been performed with the use of Feynman path integrals in [5] including full
quantization of the electromagnetic field in a dispersive dielectric. In this note we
concentrate our attention on the properties of the frequency dependent dielectric
constant, which does not require quantization of the electromagnetic field [6]. Main
novel features of present publication are contained in the discussion of various
models of the dielectric constant following from different couplings to the damping
modes also beyond the standard Lorentz oscillator model, and also in an outline
of how the functional integration methods can be used to describe the nonlinear
effects in an approximate way.

The paper is organized as follows. In Sec. 2 we give general outline of the
application of path integral method to the dispersive dielectric — details can be
found in [5]. Section 3 contains discussion of the Lorentz oscillator model in the
context of the present approach. It can be viewed as an extension and modification
of the results obtained in [7]. In particular, we show that this model corresponds to
uniform coupling of the atomic oscillations to the “reservoir” fields responsible for
damping. We also show that any type of the coupling to the reservoir fields leads
to the Lorentz expression for the dielectric function in the vicinity of resonance
frequency. This section contains also discussion of a “nonconventional” coupling
which cannot be directly related to the Lorentz model in the entire frequency
range. The main result here is that, despite of these differences, the structure of
the dispersion w(k) is for realistic values of the parameters nearly identical to that
obtained from Lorentz model. Section 4 is devoted to a short description of how
nonlinear effects can be described and managed using the path integral method,
and Sec. 5 contains conclusions.

2. General outline of the method

The microscopic action of a dielectric medium interacting with the electro-
magnetic field is assumed to have the form [4, 5]:
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S[E,B, P, Y,]

1 1
= [afw:[58 - g g i -2
ofafoe [ar g A v - e
—|—/dt/d3xF(P(t,:c)), (2.1)

where P is the matter polarization field modelled by a collection of harmonic
oscillators with the eigenfrequency wg. The coefficient 5 has the meaning of di-
mensionless static polarizability. The coupling between the electric field and dipole
moment of the medium is of the standard type E- P. The oscillator fields Y, mimic
degrees of freedom corresponding to the energy absorbing states and coupling of
the polarization field with these “reservoir” fields are responsible for the absorption
in the medium and, in consequence, to the appearance of the imaginary part of
dielectric constant. The function f(w’) describes the way in which the polarization
oscillators are coupled to the reservoir oscillators of various frequencies w’. Non-
linear effects are described by the term [dt [d®xF(P(t, z)) [8], where the function
F(P) may in principle have an arbitrary form. For the case of a linear medium,
considered in Secs. 2 and 3, this function is put equal to zero. All fields in (2.1) de-
pend on time and coordinates but no spatial derivatives appear in the Lagrangian
density, so that the dielectric constant does not depend on the wave vector but
only on frequency. This corresponds to temporal nonlocality of the effective action
and spatial locality, i.e. no spatial dispersion.

To find the effective action of the (classical) electromagnetic field in a disper-
sive dielectric medium we eliminate matter degrees of freedom by the path integral
method. This leads to the ground state persistence amplitude in the form [5]:

C[E, B] = exp (hseﬂ[ﬁ: B]) /[dP][dY ] exp (hS[E B.PY, ]) ,(2.2)

where the effective action 1s denoted by Seg. For a linear medium all functional
integrals are Gaussian and can be performed explicitly. As details of this calcula-
tion have been presented elsewhere [5], we give here only final results. Classical
effective action has the form

Seq[E, B] = /dt/d?’x (%0132 - iw)
-I-%/dt/dt’/d?’xE(t,az)F(t—t’)E(t’,az), (2.3)

where Fourier transform of the propagator I'(t — ') is given by [5]:

= _ gowi
I'w) = T — () (2.4)
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with
1 [ v(w)|?
Ar(w) = P_z/o dw’% (2.5)
and the scaled coupling function v(w) is given by v(w) = (g0w28p)'/ 2 f(w).
It can be clearly seen from (2.3) that the effective action is nonlocal in time,
with the nonlocality described by the propagator I'(t — t'). In a local theory of
electromagnetic field one can define the displacement field D(¢, ) by [9]:

oL
D(t,z) = OBl 2) (2.6)
where £ is a local Lagrangian density of the electromagnetic field. Natural gen-
eralization of (2.6) to the case of nonlocal theories is to write (2.3) using time
Fourier components of the fields, which gives for the Lagrangian density in the

(w, ) space [5]:

1 ~

Coa(B, B) = 20| B, ) = | Ble, o) + ()| B, ) (2.7)

and determine the displacement field as
a*Ceff
D = .
) = T 2 (28)

which immediately leads to

D(w, 2) = e E(w, ) + ['(w)E(w, =). (2.9)

To avoid “double counting” [4, 5] one can use formulae (2.7), (2.8) and (2.9) only
for w > 0. The dielectric constant for real positive frequencies is therefore given by

er(w) =1+ %f(w). (2.10)

Analytic continuation to negative frequencies can be done according to e_(w) =
% (—w), which in the final result gives [5]:

wips

=1 2.11
e(w) + wi —w? —w2g(w)’ ( )
where
L[ |v(w")]?
A = — dw’ . 2.12
r(w) P> /0 Yo —w? — iesgn(w) (2.12)

Equation (2.12) gives the basic expression for the function Ar(w), which determines
properties of the dielectric constant as function of frequency. Assuming that |v(w)|?
is an even square integrable function [4] one can write (2.12) in the form [5]:
o0 /
Ar(w) = L/ du! O (2.13)
20%w J_o0 W —w—le

Expression (2.11) for the dielectric constant will be discussed in the next section,
mainly from the point of view of its dependence on the shape of the coupling func-
tion v(w) and comparison with existing models. This last issue will be considered
also in connection with the recent publication by Wubs and Suttorp [7].
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3. Models of the dielectric constant
in a linear dispersive medium

We shall consider now properties of the dielectric constant following from
(2.11) and (2.12) with various shapes of the reservoir coupling function v(w). First
of all we compare the present approach with the standard Lorentz oscillator model
of the dielectric medium, in which [7]:

w2

=1 <. 3.1
er(w) + wE —w? — 2wy (3.1)
To find what type of coupling to the reservoir fields corresponds to the Lorentz
oscillator model we have to identify imaginary part of Ag(w), which according to

(2.12) is

T

ImAg(w) lo(w)]?. (3.2)

Comparing (2.11) with (3.1) we see that w?ImAg(w) = 2wy which immediately
gives

- 2p%w

o)l = 2227 (3.3)

T
This shows that Lorentz oscillator model corresponds to uniform coupling of the
polarization field to the reservoir oscillators or frequency independent damping.
Let us note however that using formula (2.13) leads to a divergent integral and one
should introduce then a cut-off assuming the coupling function e.g. in the form [7]:
S s
Pl = =
which has the limit equal to (3.3) when the cut-off parameter b tends to infinity.
Substitution of (3.4) to (2.13) gives a convergent integral. The above derivation
shows that the Lorentz oscillator model is a special case of the general form of

(3.4)

the dielectric constant (2.11) and (2.12), contrary to what has been argued in
[6], that the Lorentz oscillator model is not compatible with damped Hopfield
model analyzed in the scheme of canonical quantization in [4]. Also, in contrast
with the derivation of this model presented in [7] in a similar scheme, it is by no
means necessary to introduce a cut-off to get convergent integral for Ar(w). On
the other hand, use of the cut-off leads to an interaction of the polarization field
with damping modes of the medium for which coupling to high frequency reservoir
oscillators is suppressed.

The Lorentz oscillator model corresponds to a situation in which the damping
constant v is frequency independent. On the other hand, dielectric constant given
by Eq. (2.11) characterizes a medium for which the damping constant would in
general depend on frequency; we shall show now that, independent of the shape of
the coupling function v(w), the dielectric function reduces to the Lorentz oscillator
form in the vicinity of resonance frequency determined by
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w2 —wl+w? Redr(wres) = 0. (3.5)

res

The denominator of (2.11) can be written as f(w?) + iw?ImAg(w), where f(w?) =

w? — w2 + w?ReAr(w) — let us note that real part of Ag is a function of w? [cf.

(2.12)]. Close to the resonance frequency we have f(w?) & f/(wl)(w?—wZ,). Using

(3.4) and approximating slowly varying function v(w) by its value at resonance
frequency, we can write (2.11) approximately as

wZ

c (3.6)

—w? — 2wy’

glw) =1+ oL

with wg = w(%ﬁ/f/(w?es) and Y= (7/4p2)|v(w1‘es)|2/f/(w?es)'
The dispersion, i.e. dependence of the frequency on the real wave vector k
is determined by equation

wle(w) — ?k? = 0. (3.7)
For complex dielectric constant this leads to complex polariton modes with complex
frequency having negative imaginary part. In the Lorentz oscillator model there
are two polariton branches with a band gap between them [3].

The Lorentz oscillator model has been analyzed in the framework of an
approach similar to the present one previously [7, 6], also with the use of the

cut-off function of the type (3.4) [7]. We shall consider now a “nonconventional”
coupling function which cannot be directly related to this model and has the form

W
v(w) = apwy’” — T (3.8)

There are two phenomenological parameters characterizing this coupling, @ and &.
The first one is related to strength of the coupling, the second determines width
of the coupling function. With increasing & more high frequency modes of the
reservoir are coupled to the polarization oscillators, and maximum value of v(w)
decreases leading to weaker coupling to the reservoir fields. Let us note also that
with v(w) given by (3.8) there is no coupling to zero frequency modes, contrary
to (3.4). The coupling (3.8) fulfills also the requirements for v(w) mentioned e.g.
in [4], i.e. it is square integrable and does not vanish for nonzero frequencies. The
function Ar(w) (2.12) is

_a2ﬂ' 1
4b0 ((.d/(.do + ibo)z’

where by = b/wg. The resonance frequency [cf. (3.5)] does not differ much from wy.

Ar(w) = (3.9)

A reasonable choice for the parameter b is e.g. b = 10wg, which couples the polar-
ization field to a relatively broad region of the reservoir oscillators. In the vicinity
of the resonance frequency dielectric constant is given by (3.6), and assuming that
v & 108 57! we find that for wg in optical region the parameter @ may be chosen as
a = 0.1. The real and imaginary parts of the dielectric constant in narrow region
around wg are shown in Fig. 1. The shape of £(w) has a less or more standard form
with a detailed structure visible only in a very narrow region close to the resonance
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Fig. 1. Dielectric constant for the coupling function (3.8) in the vicinity of the resonance
frequency.
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Real part of the dispersion relation (3.7) for the coupling function (3.8) (a),

and the Lorentz oscillator model (3.1) (b). Values of the parameters a, b and of the
damping constant v are given in the text. For these values of the parameters imaginary

parts of w(k) vanish for both branches.

frequency, which is slightly smaller than wg. Solutions of the dispersion relation
(3.7) are shown in Fig. 2a. There are two polariton branches, with the values of
the parameters mentioned above practically identical to the solutions of (3.7) for
the Lorentz oscillator model, shown for comparison in Fig. 2b. The band gap, i.e.
region of frequencies for which (3.7) has no solution for any real k, corresponds
approximately to wy < w < 1.6wy. For frequencies in this region real part of the
refraction coefficient n(w) = y/e(w) vanishes and its imaginary part may acquire
large values. Using the coupling function (3.8) one obtains also a third purely
imaginary mode with ITme & —10. A similar purely imaginary “cut-off mode” [7]
also appears after using the coupling function (3.4); this mode disappears when
b — oo and is therefore not present in the Lorentz oscillator model.

4. Nonlinear effects in a dispersive dielectric medium

To account for nonlinear effects we use the microscopic action (2.1) with
nonvanishing F'(P). For instance in the case of a Kerr-type dielectric we would have
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F(P) = La(P- P)? [8]. In general the functional integrations are not Gaussian
anymore and can be evaluated only with the use of some type of perturbative
methods. One of the possibilities is to use effective action after eliminating degrees
of freedom of the reservoir field

SWIE, B; P| = Sen[E, B

/dt/d3 T P —wip?) - /dt/d%E p
/dt/dt’/d3 / dw’ fw ( )Dr(t —t'; ') P(t')
-I—/dt/d?’xF(P(t,:c)), (4.1)

where [5]:

De(t — ;) :/_Oo dw expl—iw(t = )] (4.2)

oo 2T W —w? —ic

Treating the polarization field as the dynamical variable we obtain from least
action principle the following equation for P:

2
%tf+wgp+ 05 /dt’/ o’ F(@ )22 Dp(t =50 P(t')
or
= —Eoﬁng—F Eoﬁwga—P (43)
or
2
%P—l—wgP—l—eoﬁ /th P
or
= —Eoﬁng—F Eoﬁwga—P, (44)
where
/ « / / a I /
F(t—t):/o dw’ f(w')? @Dp(t—t w'). (4.5)

Green function I'(t —t') of Eq. (4.4) fulfills
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§ 2
(% + wg) I'(t - t/) + 506ﬂ / dt”F(t — t”)F(t” . t’)
p

= gofuwib(t — '), (4.6)

and it can be easily shown that its Fourier transform is given by (2.4) and (2.5).
If a solution of the homogeneous equation is not necessary (e.g. when the electric
field vanishes in the “remote past” and is switched on gradually), the solution of
Eq. (4.4) can be formally written as

o= _/dt/F(t_t')E(t'H/dt’F(t—t’)ala’Z/)'

If, for example F'(P) = %a(P~ P)? then 0F/O0P = (P - P)P and the integral
equation for the polarization field has the form

(4.7)

P = —/dt’F(t—t’)E(t’) —l—a/dt’F(t—t’)[P(t’) - P P(t). (4.8)

The first-order polarization is given by

ﬂ%w:—/@Ta—wﬂw, (4.9)

and iterating once, we obtain an approximate solution of (4.8)

Pt~ —/dt’F(t -t E(t)
—a/dt’F(t—t’) [/ dtlf(t’—tl)E(tl)~/dt2F(t’—t2)E(t2)

X /dtgf(t’ —t3)E(t3). (4.10)
It follows from (4.10) that the third-order susceptibility can be written as

Nt —ty,t —tg,t —t3)

= —a/dt’F(t—t’)F(t’—tl)F(t’ — i)'t —t3), (4.11)
which as the function of frequencies [10] reads

X(S)(W =wi + wy + w3)
_ _a/dtldtzdt?)eiwl(t—tl)ein(t—tQ)eiwg(t—ta)

X /dt’F(t — I —t) (' —ta) (' —t3). (4.12)
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Substituting the Fourier representations of I'(t) (2.4) and performing the time
integration, we obtain

X(S)(w =wy +wsFws) = —ozf(wl +wy + w;),)f(wl)f(wz)f(w;g). (4.13)
More extensive description of the nonlinear effects in the framework of path inte-
grals is now under investigation and will be published elsewhere.

5. Conclusions

We have shown here how an effective theory of the macroscopic electromag-
netic field in a dispersive medium can be formulated with the help of the Feynman
path integrals over classical histories of the system. As a natural starting point
the microscopic Lagrangian of the Hopfield type [3], amended by coupling with
the reservoir oscillators to account for losses [4], has been used. The effective La-
grangian, nonlocal in time, can be obtained in the explicit form in the case of
a linear medium, when all functional integrations are of Gaussian type. As the
main result at this level of calculation we have evaluated the frequency depen-
dent dielectric function of the form which agrees with that obtained earlier by
canonical quantization method [4]. Specific shape of ¢(w) as function of frequency
depends on the form of the coupling with the reservoir fields. In particular, it has
been shown here that the standard Lorentz model corresponds to the uniform,
frequency independent coupling. Independent of the form of the coupling to the
reservoir fields, the dielectric function has the Lorentz shape in a vicinity of the
resonance frequency, according to formulae (3.5) and (3.6).

The functional integration methods are also very suitable and promising in
the treatment of nonlinear effects in dispersive dielectric media, in particular those
with a Kerr-type nonlinearity. Since the functional integrals are not Gaussian in
this case and cannot be performed explicitly, it is necessary to use some sort of per-
turbative methods. We propose here to use an effective action for the polarization
field P(t), obtained by integrating over the reservoir fields, when the polarization
field 1s treated as a dynamical variable and the electric field is assumed to be an
external field with given dependence on space and time variables. This effective
action was further used to derive an integro-differential equation for P(t), with
a first-order approximate solution corresponding to the linear case, and, when it-
erated once, giving the contribution cubic in the external electric field describing
the Kerr-type nonlinearity. Having the third-order contribution to the polarization
fields a standard method [10] was used to calculate the third-order susceptibility
[cf. formula (4.13)]. Application of the functional integration method to the de-
scription of effective electric field in nonlinear media on macroscopic level requires
further consideration and is presently being analyzed in more details.
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