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Th e pu rpose of th is paper is a descriptio n of the disp ersi ve die lectri c

medium , both linear and nonlin ear, from Ùrst principl es usin g the Ùeld the -
oretic metho ds based on the Feynman path integrals over classical tra j ec-
tories . T he main idea is to use notion of e˜ective Ùelds, in the present case

the electromagnetic Ùeld modiÙed by presence of a p olari zab le medium. I n-
teraction of the Ùeld with the medium on the microscopic level is describ ed
by a modiÙed H opÙeld Lagrangian containing terms corresp onding to the
electromagnetic Ùeld, the matter polariza tion Ùeld mo delled by harmonic

oscilla tors w ith some resonance frequency and other matter Ùelds describin g
the degrees of freedom responsibl e for absorption in the medium (reservoir
Ùelds). T he polariza tion Ùeld is coupled b oth to the electric Ùeld and the

reservoir Ùelds. E˜ective theory is obtained by eliminati on of the matter de-
grees of freedom w hich is achieved by functional integration over all matter
Ùelds. For a linear medium all calculati ons can be done exactly leading to the
e˜ective Lagrangian from w hich, among others, an expression for frequency

dep endent dielectric constant can b e extracted. Explic it form of the dielec-
tric constant depends on the w ay by which the p olarizati on Ùeld couples to
the reservoir Ùelds. In particular, unif orm coupli ng to all reservoir mo des
gives the standard Lorentz oscill ator model, and for any typ e of couplin g

the Lorentz form of dielectri c constant is retrieved for frequencies close to
the resonance. For w eak damping the disp ersion ! ( k ) is little sensitive to
the form of coupling leading to polar it on modes not di˜erent from those of

the Lorentz model. I t is also outlined brie Ûy how the functional integration
metho d could b e used to descriptio n of nonli near e˜ects in the medium.

PAC S numb ers: 42.65.{k, 12.20. {m

1. I n t rod uct io n

The purp ose of thi s paper is to present a m odel of the di spersive di electri c
m edium , both l inear and nonl inear, based on Ùeld theo reti cal metho d of inte grati on

(263)



264 ` . Ar tyszuk, A . Bechler

over classical hi stori es of a physi cal system , i .e. Feynm an path integra ls [1, 2].
The main idea behind appl icati on of thi s metho d to the descripti on of polari zable
m edia is tha t on the macroscopic level electro magneti c Ùeld in a dielectri c medium
is an exam ple of an ẽ ecti ve Ùeld, where the externa l electri c Ùeld is m odi Ùed by
polari zati on of the medium . It is theref ore an im porta nt questi on how thi s bul k
m ateri al e˜ects can beaccounted for ta ki ng microscopic Lagrangian of the medium
and electro magneti c Ùeld as starti ng point. There is a wi de body of l i tera ture
deal ing wi th thi s issue; the appro ach presented here is based on the HopÙeld m odel
[3], whi ch has been extended to incl ude dam pi ng by Huttner and Barnett [4]. In
thi s last paper the f ul l quantum theory was developed based on the m etho d of
canoni cal quanti zati on. The m ain goal is to elim inate matter degrees of freedom
correspondi ng to the polari zati on of the medium and to dampi ng modes described
by a set of harm onic oscillato rs coupl ed to the polari zati on Ùeld. Thi s program
has been perform ed wi th the use of Feynm an path integ ra ls in [5] includi ng ful l
quanti zati on of the electro magneti c Ùeld in a dispersive di electri c. In thi s note we
concentra te our attenti on on the properti es of the frequency dependent di electri c
constant, whi ch does not requi re quanti zati on of the electro magneti c Ùeld [6]. Ma in
novel features of present publ icati on are conta ined in the discussion of vari ous
m odels of the dielectri c constant f ollowi ng from di˜erent coupl ings to the dampi ng
m odes also beyond the standard Lo rentz oscil lato r m odel , and also in an outl ine
of how the functi onal integ rati on m ethods can be used to describe the nonl inear
e˜ects in an appro xi m ate way.

The paper is organized as fol lows. In Sec. 2 we give general outl ine of the
appl icati on of path integra l m etho d to the dispersive di electri c | deta ils can be
found in [5]. Section 3 conta ins discussion of the Lo rentz osci llato r model in the
context of the present appro ach. It can be vi ewed as an extensi on and modiÙcati on
of the resul ts obta ined in [7]. In parti cul ar, we show tha t thi s m odel corresp onds to
uni form coupl ing of the ato mic oscil lati ons to the \ reservoi r " Ùelds responsi ble for
dam ping. W e also show tha t any typ e of the coupl ing to the reservoi r Ùelds leads
to the Lorentz expression for the dielectri c functi on in the vi cini ty of resonance
frequency. Thi s section conta ins also discussion of a \ nonconventi onal" coupl ing
whi ch cannot be di rectl y related to the Lo rentz m odel in the enti re frequency
range. The main result here is tha t, despite of these di ˜erences, the structure of
the di spersion ! ( k ) i s for real istic va lues of the parameters nearl y identi cal to tha t
obta ined from Lorentz model . Section 4 is devo ted to a short descripti on of how
nonl inear e˜ects can be described and m anaged using the path integ ra l m etho d,
and Sec. 5 conta ins concl usions.

2. G ener al out l ine of t he m et hod

The m icroscopic acti on of a di electri c m edium intera cti ng wi th the electro-
m agneti c Ùeld is assumed to have the form [4, 5]:
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where P is the matter polarizati on Ùeld m odel led by a col lection of harm oni c
oscil lato rs wi th the eigenfrequency ! 0 . The coe£ ci ent Ù has the m eani ng of di -
m ensionlessstati c polarizabi l i t y. The coupl ing between the electri c Ùeld and di pole
m oment of the m edium is of the standard typ eE P . The oscil la tor Ùelds Y ! m imic
degrees of freedom corresp ondi ng to the energy absorbi ng states and coupl ing of
the polari zati on Ùeld wi th these \ reservoi r" Ùelds are responsi ble for the absorpti on
in the m edium and, in consequence, to the appearance of the im aginary part of
di electri c constant. The functi on f ( ! ) describes the way in whi ch the polarizati on
oscil lato rs are coupl ed to the reservoi r oscil la tors of various frequenci es ! . No n-
l inear e˜ects are described by the term

R
d t

R
d 3 x F ( P ( t; x)) [8], where the functi on

F ( P ) m ay in pri ncipl e have an arbi tra ry f orm . For the case of a l inear m edium ,
considered in Secs. 2 and 3, thi s functi on is put equal to zero. Al l Ùelds in (2.1) de-
pend on ti m e and coordi nates but no spati al derivati ves appear in the Lagrangian
density , so tha t the di electri c constant does not depend on the wa ve vecto r but
onl y on frequency. Thi s corresp onds to tem poral nonl ocal i ty of the e˜ecti ve acti on
and spati al local i ty , i .e. no spati al dispersion.

T o Ùnd the e˜ecti ve acti on of the (cl assical ) electrom agneti c Ùeld in a disper-
sive dielectri c m edium we eliminate m atter degrees of freedom by the path integra l
m etho d. Thi s leads to the ground state persistence am pl itude in the form [5]:
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where the e˜ecti ve acti on is denoted by S . For a l inear m edium al l functi onal
integ ra ls are Gaussian and can be perf orm ed expl icitl y. As deta i ls of thi s calcula-
ti on have been presented elsewhere [5], we give here only Ùnal results. Cl assical
e˜ecti ve acti on has the form
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where Fouri er tra nsform of the pro pagato r À ( t t ) i s given by [5]:
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and the scaled coupl ing f uncti on v (! ) i s given by v ( ! ) = ( " 0 ! 2
0

Ù£ ) 1 2 f ( ! ) .
It can be clearly seen from (2.3) tha t the e˜ecti ve acti on is nonlocal in ti m e,

wi th the nonl ocal i t y described by the propagato r À ( t t ) . In a local theory of
electrom agneti c Ùeld one can deÙne the displacement Ùeld ( t; ) by [9]:

( t; ) =
@

@ ( t; )
; (2 .6)

where is a local La grangian density of the electrom agneti c Ùeld. Natura l gen-
era lizati on of (2 .6) to the case of nonlocal theo ri es is to wri te (2.3) using ti m e
Fouri er com ponents of the Ùelds, whi ch gives for the Lagrangian density in the
( ! ; ) space [5 ] :
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and determ ine the displ acement Ùeld as
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whi ch im mediatel y leads to

( ! ; ) = " 0 ( ! ; ) + eÀ ( ! ) ( ! ; ) : (2 .9)
To avoid \ doubl e counti ng" [4, 5] one can use form ulae (2.7), (2 .8) and (2.9) onl y
for ! > 0 . The dielectri c constant f or real positi ve frequenci es is theref ore given by
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Equati on (2.12) givesthe basic expression for the functi on Ñ ( ! ) , whi ch determ ines
pro perti es of the dielectri c constant as functi on of frequency. Assum ing tha t v ( ! ) 2

i s an even square integ rable functi on [4] one can wri te (2.12) in the form [5]:
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Expressi on (2.11) for the dielectri c constant wi l l be di scussed in the next section,
m ainly from the point of vi ew of i ts dependence on the shape of the coupl ing func-
ti on v ( ! ) and com parison wi th exi sting m odels. Thi s last issue wi l l be considered
also in connecti on wi th the recent publ icati on by W ubs and Sutto rp [7].
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3. Mo d el s of t h e diel ectr ic co nst an t
i n a l i near d isper siv e m ed iu m

W e shal l consider now properti es of the dielectri c constant f ollowi ng f rom
(2.11) and (2.12) wi th vari ous shapes of the reservoi r coupl ing functi on v ( ! ) . Fi rst
of al l we compare the present approach wi th the standard Lo rentz oscil lato r m odel
of the dielectri c medium , in whi ch [7]:

" L ( ! ) = 1 +
! 2

c

! 2
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À 2i ! Û
: (3 .1)

T o Ùnd wha t typ e of coupl ing to the reservo ir Ùelds corresponds to the Lorentz
oscil lato r m odel we have to identi fy imaginary part of Ñ R ( ! ) , whi ch accordi ng to
(2.12) is
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Compari ng (2.11) wi th (3.1) we see tha t ! Im Ñ ( ! ) = 2! Û whi ch im mediatel y
gives

v ( ! ) 2 =
4 Û£ 2

¤
: (3 .3)

Thi s shows tha t Lorentz oscil lator m odel corresp onds to uni form coupl ing of the
polari zati on Ùeld to the reservoi r oscil lato rs or frequency independent dampi ng.
Let us note however tha t using form ula (2.13) leads to a diverg ent integ ra l and one
should intro duce then a cut- o˜ assuming the coupl ing functi on e.g. in the form [7]:
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whi ch has the l im it equal to (3.3) when the cut- o˜ param eter b tends to inÙnity .
Substi tuti on of (3 .4) to (2.13) gives a converg ent integra l . The above deri vati on
shows tha t the Lo rentz oscil lato r m odel is a special case of the general f orm of
the dielectri c constant (2 .11) and (2.12), contra ry to wha t has been argued in
[6], tha t the Lorentz oscillato r m odel is not com pati bl e wi th damped HopÙeld
m odel analyzed in the scheme of canoni cal quanti zati on in [4]. Al so, in contra st
wi th the derivati on of thi s m odel presented in [7] in a simi lar scheme, i t is by no
m eans necessary to intro duce a cut- o˜ to get converg ent integ ra l f or Ñ ( ! ) . On
the other hand, use of the cut- o˜ leads to an intera cti on of the polari zati on Ùeld
wi th dam ping m odes of the m edium for whi ch coupl ing to hi gh frequency reservoi r
oscil lato rs is suppressed.

The Lorentz oscil lato r model corresponds to a situa ti on in whi ch the dampi ng
constant Û i s frequency independent. On the other hand, dielectri c constant given
by Eq. (2.11) characteri zes a m edium for whi ch the dampi ng constant would in
general depend on frequency; we shal l show now tha t, independent of the shape of
the coupl ing functi on v ( ! ) , the di electri c functi on reduces to the Lo rentz osci llato r
form in the vi cini ty of resonance frequency determ ined by
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The denom inato r of (2 .11) can be wri tten as f ( ! 2 ) + i ! 2 Im Ñ R ( ! ) , where f ( ! 2 ) =
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0 + ! 2 ReÑ ( ! ) | let us note tha t real part of Ñ i s a functi on of ! 2 [cf .
(2 .12)] . Cl oseto the resonance frequency we have f ( ! 2 ) f ( ! 2 )( ! ! ) . Using
(3.4) and appro xi mati ng slowl y varyi ng functi on v ( ! ) by i ts value at resonance
frequency, we can wri te (2.11) appro xi matel y as
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wi th ! = ! Ù= f (! ) and Û = (¤ =4 £ 2 ) v ( ! ) 2 = f ( ! ) .
The di spersion, i .e. dependence of the frequency on the real wa ve vecto r

is determ ined by equati on

! 2 " ( ! ) c2 k 2 = 0 : (3 .7)

For com plex dielectri c constant thi s leads to com plex polar i ton modes wi th com plex
frequency havi ng negati ve im aginary part. In the Lo rentz oscil lato r m odel there
are tw o polari to n branches wi th a band gap between them [3].

The Lo rentz oscillato r m odel has been analyzed in the framework of an
appro ach sim i lar to the present one previ ousl y [7, 6], also wi th the use of the
cut- o˜ functi on of the typ e (3.4) [7]. W e shal l consider now a \ nonconventi onal "
coupl ing functi on whi ch cannot be di rectl y related to thi s m odel and has the f orm

v ( ! ) = a£!
3 2
0

!

! 2 + b2
: (3 .8)

There are two phenom enological parameters characteri zing thi s coupl ing, a and b.
The Ùrst one is related to streng th of the coupl ing, the second determ ines wi dth
of the coupl ing functi on. W i th increasing b more hi gh frequency m odes of the
reservo i r are coupl ed to the polari zati on oscil lato rs, and m axi mum value of v ( ! )

decreases leadi ng to weaker coupl ing to the reservoi r Ùelds. Let us note also tha t
wi th v (! ) given by (3.8) there is no coupl ing to zero f requency m odes, contra ry
to (3.4). The coupl ing (3.8) fulÙlls also the requi rem ents for v ( ! ) m enti oned e.g.
in [4], i .e. i t is square integ rable and does not vanish for nonzero frequenci es. The
functi on Ñ ( ! ) (2 .12) is

Ñ ( ! ) =
a 2 ¤

4 b0

1

( ! = ! 0 + ib0 ) 2
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where b0 = b= ! 0 . The resonance f requency [cf. (3 .5)] does not di ˜er m uch from ! 0 .
A reasonable choice for the param eter b i s e.g. b = 1 0 ! 0 , whi ch coupl es the polar-
izati on Ùeld to a relati vel y broad region of the reservoi r oscil lato rs. In the vi cini ty
of the resonance frequency dielectri c constant is given by (3.6), and assuming tha t
Û 1 0 8 s 1 we Ùnd tha t for ! 0 in opti cal region the param eter a may be chosen as
a = 0 :1 . The real and im aginary parts of the dielectri c constant in narro w region
around ! 0 are shown in Fi g. 1. The shape of " ( ! ) has a lessor m ore standard f orm
wi th a deta iled structure vi sible only in a very narro w region close to the resonance
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Fig. 1. Dielectric constant for the coupli ng function ( 3.8) in the vicini ty of the resonance

frequency .

Fig. 2. Real part of the disp ersion relation (3. 7) for the couplin g function (3. 8) (a),

and the Lorentz oscill ator model (3. 1) (b). Values of the parameters a ; b and of the

damping constant Û are given in the text. For these values of the parameters imagina ry

parts of ! ( k ) vanish for b oth branches.

frequency, whi ch is slightl y smal ler tha n ! 0 . Soluti ons of the dispersion rela ti on
(3.7) are shown in Fi g. 2a. There are two polar i ton branches, wi th the values of
the param eters m enti oned above practi cal ly identi cal to the soluti ons of (3 .7) for
the Lorentz oscil lato r model , shown for com parison in Fi g. 2b. The band gap, i .e.
reg ion of frequenci es for whi ch (3.7) has no soluti on for any real k , corresponds
appro xi m atel y to ! 0 ç ! ç 1 : 6 ! 0 . For frequenci es in thi s region real part of the
ref racti on coe£ cient n ( ! ) =

p
" ( ! ) vanishes and i ts imaginary part may acqui re

large values. Using the coupl ing functi on (3.8) one obta ins also a thi rd purel y
im aginary mode wi th Im " ¤ À 10. A simi lar purel y im aginary \ cut- o˜ m ode" [7]
also appears after using the coupl ing functi on (3.4); thi s mode di sappears when
b ! 1 and is theref ore not present in the Lorentz oscil lato r m odel .

4 . No nl i near e˜ ect s in a di sp er siv e d iel ectr ic m ed iu m

T o account for nonl inear e˜ects we use the m icroscopi c acti on (2.1) wi th
nonvani shing F ( ). For insta nce in the case of a Kerr- typ e di electri c we wo uld have
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F ( P ) = 1

4
˜ ( P Â P ) 2 [8]. In general the f uncti onal integ rati ons are not Gaussian

anym ore and can be evaluated onl y wi th the use of som e typ e of perturba ti ve
m etho ds. One of the possibi l i ti es is to use e˜ecti ve acti on after eliminati ng degrees
of freedom of the reservo ir Ùeld
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T reati ng the polari zati on Ùeld as the dyna m ical vari abl e we obta in from least
acti on pri ncipl e the f ollowi ng equati on for P :
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Green functi on À (t t ) of Eq. (4.4) fulÙlls
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and it can be easily shown tha t i ts Fouri er tra nsform is given by (2.4) and (2.5).
If a soluti on of the hom ogeneous equati on is not necessary (e.g. when the electri c
Ùeld vani shes in the \ remote past" and is swi tched on gradua lly), the soluti on of
Eq. (4.4) can be form ally wri tten as
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and i tera ti ng once, we obta in an appro xi mate soluti on of (4 .8)
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It f ollows from (4.10) tha t the thi rd- order susceptibi l i ty can be wri tten as
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Substi tuti ng the Fouri er representati ons of À ( t ) (2 .4) and perform ing the ti m e
integ rati on, we obta in

â (3 ) ( ! = ! 1 + ! 2 + ! 3 ) = À ˜ eÀ ( ! 1 + ! 2 + ! 3 ) eÀ ( ! 1 ) eÀ ( ! 2 ) eÀ ( ! 3 ) : (4 .13)

Mo re extensi ve descripti on of the nonl inear e˜ects in the fram ework of path inte-
gra ls is now under inv estigati on and wi l l be publ ished elsewhere.

5. Co n cl usion s

W e have shown here how an e˜ecti ve theo ry of the m acroscopic electrom ag-
neti c Ùeld in a di spersive medium can be form ula ted wi th the help of the Feynm an
path integ ra ls over classical hi stori es of the system . As a natura l starti ng point
the m icroscopi c Lagrangian of the Ho pÙeld typ e [3], am ended by coupl ing wi th
the reservoi r oscil lato rs to account f or losses[4], has been used. The e˜ecti ve La-
grangian, nonlocal in ti m e, can be obta ined in the expl icit form in the case of
a l inear m edium , when al l functi onal integrati ons are of Gaussian typ e. As the
m ain resul t at thi s level of calculati on we have evaluated the frequency depen-
dent dielectri c functi on of the form whi ch agrees wi th tha t obta ined earl ier by
canoni cal quanti zati on m etho d [4]. SpeciÙc shape of " ( ! ) as functi on of frequency
depends on the form of the coupl ing wi th the reservoi r Ùelds. In parti cul ar, i t has
been shown here tha t the standard Lorentz m odel corresp onds to the uni form ,
frequency independent coupl ing. Indep endent of the form of the coupl ing to the
reservo i r Ùelds, the dielectri c functi on has the Lo rentz shape in a vi cini ty of the
resonance frequency, accordi ng to form ula e (3.5) and (3.6).

The functi onal integ rati on metho ds are also very suita bl e and prom ising in
the trea tm ent of nonl inear e˜ects in dispersive di electri c m edia, in parti cular tho se
wi th a Kerr- typ e nonl ineari ty . Since the functi onal integ ra ls are not Gaussian in
thi s case and cannot be perf orm ed expl icitl y, i t is necessary to use som e sort of per-
turba ti ve m etho ds. W e propose here to use an e˜ecti ve acti on for the polarizati on
Ùeld P ( t ) , obta ined by integ rati ng over the reservo i r Ùelds, when the polarizati on
Ùeld is trea ted as a dyna mical vari able and the electri c Ùeld is assumed to be an
externa l Ùeld wi th given dependence on space and ti me vari ables. Thi s e˜ecti ve
acti on was further used to deri ve an integ ro-di ˜erenti al equati on for P ( t ), wi th
a Ùrst-order approxi mate soluti on corresp ondi ng to the l inear case, and, when i t-
erated once, givi ng the contri buti on cubi c in the externa l electri c Ùeld describing
the Kerr- typ e nonl ineari ty . Ha vi ng the thi rd- order contri buti on to the polarizati on
Ùelds a standard metho d [10] wa s used to calcul ate the thi rd-order susceptibi l i ty
[cf . form ula (4.13)]. Appl icati on of the functi onal integ rati on metho d to the de-
scripti on of e˜ecti ve electri c Ùeld in nonl inear m edia on m acroscopic level requi res
further consi derati on and is presentl y being analyzed in more detai ls.
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