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Retarded forms of the nonequilibrium reduced-density operator are de-
rived from the generalized Schrodinger variational principle of a system with
both mechanical and thermal perturbations, taking into account the addi-
tional condition that the values of generalized thermodynamic coordinates
are fixed at infinitely remote past. This reduced density operator may be
useful in describing nonequilibrium properties of nanoscopic and mesoscopic
systems, as well as ultrathin films. With the help of this reduced-density
operator the generalized Green—Kubo formulae are obtained.

PACS numbers: 05.30.—d, 05.70.Ln

1. Introduction

Ultrathin films, mesoscopic and nanoscopic systems are frequently subjects
of interests in research as well as micro- and nanoelectronics and often the need
arises to take into regard their interactions with environment. For such systems
the postulates of quantum statistical mechanics are not exactly fulfilled as this
theory assumes that the effect of environment can only be a mixing of states in
the system studied and that it has no influence on the spectrum of eigenstates of
its Hamiltonian. The above facts instigate the need of formulation of a quantum
theory of nanoscopic systems, mesosopic systems, and thin films more general than
the quantum statistical mechanics.

Usually, while investigating theoretically macroscopic bulk systems we do
not have to take into account their interaction with environment regarding the
short-range character of intermolecular interactions. Any effective interaction
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among the molecules of the system and its environment could only occur through
the atoms on the system surface or near it. The number of the interacting atoms
usually is an insignificant part of all atoms of the system. However, considering
thin films and alike systems, the number of atoms interacting with environment is
frequently of the same order of magnitude as the total number of atoms in the sys-
tem. Moreover, thin films are deposited on bulk substrates whose structure affects
that of the films, so the interaction between the substrate and the film has to be
taken into regard. A common procedure to realize it 1s to introduce phenomeno-
logical surface parameters. The values of these parameters significantly influence
physical properties of nanoscopic and mesoscopic systems or thin films which 1s
for example evidenced in their spectra of collective excitations.

In this paper we propose a general method which takes into account the
interaction between the nanoscopic system or thin film and the substrate on a
microscopic level. In this method the interactions are included already in the con-
struction of the nonequilibrium reduced-density operator which makes it possible
to apply the mean field type approximation. The method proposed is a general-
ization of the ideas presented earlier [1-3].

2. Fundamental assumptions and nonequilibrium reduced-density
operator

It is known that the only many-body system which can be treated as a fully
isolated system is the Universe itself. All other many-body systems must be consid-
ered as non-isolated and thus interacting with environment, which means that they
cannot be exactly described within the quantum theory. The need to describe the
Universe as a closed system within the quantum theory gave rise to a new field of
theoretical physics called quantum cosmology. In quantum cosmology the Universe
is understood as the greatest physical system describable in terms of the quantum
theory. However, quantum cosmology has generated some difficult interpretation
problems in the quantum theory. New interpretations have appeared, satisfactory
from the point of view of the quantum cosmology. Quantum cosmology assumes
that the whole Universe can be described in terms of a state vector. We have taken
this assumption which means we assume that the notion of the state vector of the
Universe is meaningful as it 1s implied by the recently proposed interpretation of
the quantum theory [4-6].

We assume that at the time ¢t = —oco (in a far past for a given system) the
state vector of the Universe satisfies the stationary Schrodinger equation:

H[P(t = —o0)) = E|(l = —0)), (1)

where H is the Hamiltonian of the Universe. It can be easily shown that this
equation is equivalent to the following variational principle:

STe[(H — E)d(t = —c0)] = 0, (2)
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where
d(t = —) = (1 = o)) F(t = —c0) (3)

is the density operator of the Universe.

Next we divide the Universe into three subsystems: the nanoscopic system
studied 1, its closest macroscopic environment 2, and the remaining part of the
Universe 3, so the Hamiltonian A can be written as

3
H:ZH]'+ZH]']'/, (4)
Jj=1 J#3!
where H; is the Hamiltonian of the systems j = 1, 2, 3, and the terms ;. describe
the interactions among the systems.
The expectation value {a;) of a given observable a; of the systems j = 1,23
is given by the following formula [7]:

(aj) = (Wl|a;|¥) = Tr[a;d] = Tr[a;d;], ()

where

dj: Trj’+j”[d]a j/ajllgéj (6)
is the reduced-density operator of the system j, while Tr;.y;+[] is the partial trace
over the states of the system j’ + j” (of the remaining part of the Universe).

The dimensionless von Neumann entropy of the system j, describing the
degree of mixing of its states, is defined by the following equation [7]:

5]' = —TI'j [d] In d]] (7)

We assume that for { = —oo, the degree of state mixing is fixed for all three
systems, so

sj(t = —o0) = =T, [d;(t = —o0) Ind;(t = —o0)] = constant[d;] > 0 (8)
forj=1, 2, 3.

In a nanoscopic system 1 nonequilibrium processes can occur as a result of
the system’s response to the switching-on of an external time-dependent classical
field (mechanical perturbations) or as a result of the internal inhomogeneities in
the nanoscopic system (thermal perturbation). Till now, in most cases these two
types of sources of nonequilibrium processes have been investigated separately.
However, the division of perturbations into mechanical and thermal is, in general,
justified only in the first approximation. In higher approximations, mechanical
perturbations create inhomogeneities in the distributions of mass, energy, and
momentum and, consequently, lead to the appearance of thermal perturbations
[1, 8, 9].

The paper presented is aimed at a construction of a general formalism which
can describe both types of mechanical and thermal perturbation processes in
nanoscopic system 1.
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We shall consider the response of the nanoscopic system 1 with the Hamilto-
nian H; independent of time ¢, to the adiabatic switching-on of a time-dependent
external small perturbation Vi5(t). The total Hamiltonian of the system 1, includ-
ing the external perturbation, is

Hy(t) = Hi 4+ Vis(2), (9)

where Vi5(t) is the operator of interaction of a given nanoscopic system 1 with

the external classical field. We assume that at £ = —oco an external perturbation
occurred
Vis(t = —o0) = 0, (10)
Vis(t) = v1(t) exp(6t), 6 — +0. (11)

To develop a mechanics of nonquilibrium processes such that the thermal
perturbations are also included, 1t is necessary to construct a reduced-density
operator di(t) representing the conditions in which the nanoscopic systems are
found. This turns out to be possible, if we are interested in the behavior of the
system 1 in time intervals which are not too short, when the details of the initial
state of the system 1 are unimportant and the number of parameters necessary for
the description of the nonequilibrium state of the nanoscopic system 1 is reduced.
Let the nonequilibrium state of a system 1 in the time ¢ +¢' be defined by a set of
the expectation values [8]

(O1p)(t + 1) = Tr [O1,di (t + t')] = constant[d,] (12)

of certain operators Oy, where n is an index which can take continuous or discrete
values. As a consequence, we come to the condition

§(01n)(t +1') = Tr, [O1n8ds(t +1')] = 0, (13)

where édy is the first variation of the reduced-density operator. The reasons for
introducing the time ¢ + ¢’ is the same as in Refs. [1, 8].

To describe the hydrostatic stage of nonequilibrium processes in the nano-
scopic system 1 we must choose as 01, operators those of the energy density,
momentum, and particle number, or their Fourier components. To describe the
kinetic stage of nonequilibrium processes we can choose as Oy, the operator of
occupation numbers of the one-particle states.

So, we are looking for the extremum of the functional (2) in time ¢ = —oo un-
der the supplementary conditions (8) and (12). In fact, the conditional extremum
in the functional (2) corresponds to the unconditional extremum of the functional

6{Tr[(H — E)d(t = —00)] + Y An(t+ ')(O1a)(t +1')

+ZB]'5]'(tI—OO)} IO, (14)
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where A,(t +t') and B; are indeterminate Lagrange multipliers. Now we also
assume that ¢ — —oo. This means that condition (12) has introduced mem-
ory effects [8] and has a dynamic character and includes information about the
evolution of the nanoscopic system 1. It is convenient to rewrite this formula ap-
plying the Abel theorem [10, 11]. As follows from this theorem (for any function
ft+1))
0

t’l—i>IPOO JE+¢)= 51_12.106/ exp(et) f(t +t")dt/ (15)
(for a given ¢ and if this limit exists).

If we take into account (15), the functional (14) can be rewritten in the
following form:

6{Tr[(H — B)d(t = —o0)] + Ze/_o exp(et') A (t + 1'){O,)(t + t')dt’

3
+ZB]'5]'(tI—OO)} IO, e — +0. (16)
ji=1

In view of the above, taking into regard the definition of the reduced-density
operator (6) and assuming that systems 2 and 3 are macroscopic and all the
time remain in good approximation in the state of a fixed state mixing degree
(equilibrium state [3]) as systems practically uncorrelated with environment, we
arrive at

TI’l[(Hl + H{ + Hi/ — El)édl(t = —OO)]
+> e / 0 exp(et’) A (t 4+ t')Tr, [O1,6dy (t + )] dt’
—Bl(STl'l [dl(t = —OO) In dl(t = —OO)] + TI’z[(Hz — Ez)édz(t = —OO)]

—Bz(STI’z[dz(t = —OO) hl dz(t = —OO)] + TI‘B[(Hg — E3)6d3(t = —OO)]

—Bg(STI’g[dg(t = —OO) In dg(t = —OO)] = 0, (17)
where

E=FE+E>+ Es, (18)

H| = Tr,[Hyado(t = —o0)], (19)

Hi/ = TI‘z[lef(lzdz(t = —OO)] (20)

The quantity K15 is a reduced correlation superoperator

[(12 = TI’3[[(CZ3], (21)
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where the correlation superoperator K is defined by the following expression:

d=Kd, ®ds @ ds. (22)

As shown in [2, 3], an exact although formal expression for K12 can be found.

We note that this functional depends on the reduced-density operator d; in
different moments of time. Consequently, we must transform the reduced-density
operator dy(t + ') to di(t = —o0), according to the following unitary transforma-
tions:

di(t = —c0) = U (t + ¢/, ¢")ds(t + YUL(t + 1, 1), " — — (23)
for decreasing time, where
Uyt +¢',¢") = exp[—i(Hy + H))({E + ¢ — ") /R]. (24)

In expression (24) the effect of a correlation between systems 1 and 2 on the
evolution of the nanoscopic system 1 has been neglected, however, the interactions
between the two systems 1 and 2 in the mean field type approximation has been
taken into account. It is described by H{, defined by (19). Under this assumption
the following relation holds:

[(HD] > [(HT)] (25)

and in Eq. (17) the term H{ can be omitted.
Using (23-25) and calculating the first variations, we obtain

di:(t1 = —00) = exp

0
& — Z/e/ exp(et’) Py (t +t)UT(t +1,17)

x O Uy (1 + t’,t”)dt’] .t — oo, e — 40 (26)
da(t = —00) = exp[fBa(F2 — Ha)], (27)
d3(t = —o0) = exp[fs(F3 — Hs)], (28)

where

®=1-FE/Bf', Py=B7" and Oy = H, + H,
Pi=A.BrY, BaFy=1—EsBy', fa= B,

BaFs=1—FEsB3', 3= B3! (29)

and Z/ stands for a summation also over n = 1.

Equations (27) and (28) follow from the assumption that the macroscopic
systems 2 and 3 in good approximation can be considered as being in the equilib-
rium state. The form of the reduced-density operators (27) and (28) is the same
as that of the statistical operators for a canonical Gibbs distribution [3, 8].
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Additionally we assume that the following relations hold at any time ¢:

dz(t) = dz(t = —OO) (30)
and

ds(t) = ds(t = —00). (31)

Asimplied by the assumptions (9-11), we must transform the reduced-density
operator di(t = —o0) to di(), according to the following unitary transformation

for increasing time:

dignes(t) = U (' " YWis (8, 1) dro(t = —c0)Wik(8, YU (L, 7)),

t" — —oco, & — 40, (32)
where
IR
Wis(t, 1) = Pexp [E/ Vis(r, t/’)dr] , 8 —+0 (33)
tll
and
Vis(m, ") = U (r, 0" )Vas(r)Us (7, 8) (34)

is the perturbation energy operator (11) in the Dirac picture as well as P is
Dyson time-ordering operator. The reduced-density operator (32) may be useful
in describing nonequilibrium properties of nanoscopic systems, mesosopic systems,
and ultrathin films.

For f(a) — an arbitrary analytical function of the operator @ — the relation

Uf(@U* = f(UaUY) (35)
holds, where U is an arbitrary unitary operator. Using (35), from (32) we obtain

dlt”aé(t) = €Xp

0
B(t) — Z/E/ exp(et’) Pro(t +1)X1s(¢, ', ")

xOlan'é(t,t’,t”)dt’] .t — —c0, £ — 40, § — 40, (36)

where
Xys(t, ¢, 8"y = Up (4, " YWas (4, 8 UF (E+ 1 17). (37)

The reduced-density operator (36) can be written in a more compact form
by using the notation

Otn=o = 1 (38)

and

P(t) = E/_O exp(et’) Prp=o(t +t')dt’. (39)
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Hence
dltugg(t) = eXp[_glt”gé(t)], t" — —00, £ — +0, o — +0, (40)
where
_ 0
Sltl!aé(t) = E/ eXp(Et/)Sltug(t,t/)dt/, (41)
1
Sins(t, ') = Prn(t, 1) Xus (1,1, 8) 01 XT5(1, 1, 17) (42)

and 3" stands for a summation also over n = 0.
The functional @(¢) calculated from the condition of normalization [7]

Tr[d] = Tri[dy] = 1 (43)

can be expressed as

, /0
$(t) =InTry | exp [ - Z 5/ exp(et’)Pro(t + U (")
xOanl(t’,t”)dt’”, t — —oo, £ — +0. (44)
The Lagrange multipliers Py, (¢t + ') are determined from the equations
<01n>(t) = tlll_i>H_100 §E,I_I|_10 621110 TI’1 [Olndlt”éa (t)], (45)

where (O1,)(t) are the generalized thermodynamical coordinates. In the calculation
of the expectation values (O1,)(?), the parameters § > 0 and ¢ > 0 tend to zero
after the thermodynamic limit has been reached (if this limit exists for system 1).

In the particular case when H{ = 0 and Vi5(t) = 0, i.e. when there is
no interaction between a given macroscopic system and the classical field, the
reduced-density operator (32) takes the form

dye(t) = exp

ORI /_ 0 exp(et!) Pin(t + ') U (¢, )

O UL (YA |, 1 — —00, & — 40, (46)

which coincides with the nonequilibrium statistical operator (NESO) obtained ear-
lier by Zubarev [8, 10]. NESO (46) has been applied by many authors [8] to different
problems in the theory of irreversible processes in derivation of a set of equations
for energy transport momentum and a number of particles in a many-component
system, and in derivation of the relaxation or kinetic equations and those of the
Kramers—Fokker—Planck type.

By means of the integration by parts, the nonequilibrium reduced-density
operator (40) can be conveniently written in the form
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dines(t) = exp [=Sims(t, 1 = 0) + Srues(t)]

t" — —oo, £ — +0, § — +0, (47)
where Syyne5(t, " = 0) is the entropy operator and
. 0 B,
Slt”aé(t) = / eXp(Et/)%Sltué(t,t/)dt/ (48)

is the entropy production operator [1, 8]. It is easy to show that Sltugg(t) is
positive and that this fact is connected with the choice of the retarded form of the
integral (15).

If in (47) we neglect the term with the entropy production operator we
observe that the reduced-density operator coincides with the generalized statistical
operator of the quasi (local)-equilibrium distribution (or local-nonlinear response
statistical operator)

dltug(t) = eXp[—Sltug(t,t/ = 0)], t" — — 00, 6 — +0. (49)

This operator describes the nonequilibirium processes but does not describe the
irreversible transport processes. In the particular case when Vs(¢) = 0, we obtain
from this operator the quasi-equilibrium reduced-density operator

diq(t) = exp |=(t) = 3 Pra(t)01n |, (50)

which was used in a simpler form, e.g. by Mori [12] as the initial condition for the
solution of von Neumann equation.
If the operators Oy, are integrals of motion, then

Vn[Oln,Hl—FHﬂIO (51)

and reduced-density operator (49) becomes the reduced-density operator for non-
linear response of the nanoscopic systems 1:

dyyis(t) = Ur(t, Y Wis(t, ") dreg Wi (¢, U (2, 87),

t" — —o0, § — +0, (52)

where

d1eq = €XP (—@ - Z/PMOM) (53)

is the general form of the equilibrium reduced-density operator [3], and

0
P, = 5/ exp(et’) Py (t)dt’. (54)
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3. Generalized Green—Kubo formulae

The Green—Kubo theory of linear response [8] may be applied when the ther-
mal perturbations, arising as a result of the mechanical ones can be neglected, and
when the medium is passive, i.e. there is no feedback and then the generation of
thermal perturbations is impossible. In fact, in almost all real cases, the system
receiving energy from the external field can pass it on to its surrounding. This is
especially obvious if we think of the system as a distinct part of a large system,
e.g. in the magnetic resonance phenomena. Even if we assume that at the ini-
tial moment the system was in equilibrium with a thermostat, this equilibrium 1s
disturbed as a result of mechanical perturbations and consequently, thermal per-
turbations, which cannot be described by an external field, arise. For this reason
we shall now consider the possibility of generalization of the Green—Kubo formulae
to the case of the thermal perturbations.

If the perturbation Vis(t) is small, Wis(¢,¢"”) can be written, in the first
approximation, in the form

1 [t~ ~
Wist,t) = 1+ o [ Tus(rt)dr + 075, (55)
tll

Substituting (32) and (55) into the formula for the expectation value of any phys-
ical quantity of system 1 represented by the operator Aq,

<A1>(t) = lim lim hHlO Tr [Aldltugg(t)], (56)

tH——o0e—+06—+

we obtain the generalized Green—Kubo formulae [1, 8] in the following form:

t——00e—40

<A1>(t) = IhHl lim Tr [Aldlt//a(t)]

+oo
. . . i
+t//1_l>Izloo 51—13.10 51—13-10 e {(Ar[Vas (7, #7)))edT, (57)
where
1
(A Vis(mt")))e = =0 = 7)Tr {[Ar, Vas(7, 1) - drere (1)} (58)

is the nonequilibrium two-time retarded Green function and dyyn.(2) is the non-
equilibrium operator given by formula (32) in the case of Vi5(¢) = 0.

Formula (57) describes the linear retarded response of a nonequilibrium
nanoscopic, mesoscopic or macroscopic system to the adiabatic switching-on of
the classical time-dependent field. With the help of this expression we can describe
the nonequilibrium processes which occur as a result of both mechanical and ther-
mal perturbations at the same time, e.g. to describe the nonequilibrium irreversible
transport processes or relaxation process in nanoscopic, mesoscopic or mMacroscopic
systems during the adiabatic switching-on of an external time-dependent field.
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4. Conclusion

The most important point of our paper is the determination of the retarded
forms of the nonequilibrium reduced-density operator (40). This operator has
been derived from the generalized Schrodinger variational principle and describes
a nanoscopic system with both mechanical and thermal perturbations. So, the
reduced-density operator (40) may be useful in describing nonequilibrium proper-
ties of nanoscopic systems, mesosopic systems, and ultrathin films. With the help
of this reduced density operator, the generalized Green-Kubo formulae (52) are
obtained. In the method proposed, the interaction between the nanoscopic system
and the substrate is included already in the construction of the reduced-density
operator (40) which makes it possible to apply the mean field type approximation.

This work was partially supported by the State Committee for Scientific
Research under grant No. 5 P0O3B 091 20.
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