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The role played by the magnetostatic interaction in mesoscopic multi-
channel systems is discussed. We show that the interaction of currents from
different channels, when taken in the selfconsistent mean field approxima-
tion, leads to selfinductance terms in the Hamiltonian producing an internal
magnetic flux. Such multichannel systems can exhibit spontaneous flux or
flux expulsion. The dependence of these phenomena on the parameters of
the system is discussed.

PACS numbers: 73.23.Ra, 73.23.-b

1. Introduction

In this paper we want to discuss and elucidate the role played by the mu-
tual inductance and selfinductance in creating persistent selfsustaining currents
in mesoscopic metallic or semiconducting systems. We perform some model cal-
culations of persistent currents [1] in mesoscopic rings and cylinders induced by
the static magnetic field in the presence of the magnetostatic (current—current)
interaction. We assume spinless electrons, the inclusion of spin changes the pic-
ture mainly quantitatively. In the presented model calculations we also neglect the
influence of disorder on persistent selfsustaining currents as it has been the subject
of some earlier papers [2; 3]. We also argue with some earlier results found in the
literature [4].
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2. A system of two coupled rings

The calculation of persistent selfsustaining currents for a system of two elec-
trically isolated rings can be performed exactly [4]. The model of two interacting (in
T = 0 K limit) mesoscopic and quasi one-dimensional rings proposed by [4] can be
extended. The current—flux characteristics I(¢) of such a ring is a piecewise-linear

function
)]
H{¢)=-2L) |——q|— ]|, 1
(0)= -2 [ L - (£ m
where Iy = 4;%\1{22, N 18 the number of conducting electrons, ¢g = % is the flux
unit and
||| if N is odd,
q(w) = L e (2)
llz||+ 5 if N is even,

where ||z]| indicates the integral part of x.

Let us consider the system of two coaxially placed rings of selfinductance L;
(where i = 1,2 is the number of the ring) coupled by the mutual inductance M.
The magnetic fluxes ¢; and ¢2 in the rings depend on the appropriate currents I
and I5 according to

1,2 = L1201 2+ Ml ;. (3)

Equation (1) applied to both rings together with (3) form a system of four selfcon-
sistent equations. For simplicity we shall assume the same geometry of both rings
but possibly different number of electrons N7 and Ns. Further it is assumed that
N7 and N, differ by no more than a few electrons so we may neglect the difference
of Iy for the rings. The solutions of the system (1) and (3) depend on the parity
of Ni and Ny and yield spontaneous fluxes ¢g,, and ¢s, on both rings

Ps, » _ 2Io[¢po(Maa1 + Lqi 2) + 2Inqr o(L? — M?)] (4)
oy ¢ + Alygo L + 412(L2 — M?2) .

The parameters ¢;, ¢ = 1,2 indicate different solutions and take, in principle,

arbitrary integer (if N; is odd) or half integer (if N; is even) values. The number of
possible spontaneous solutions is however limited by the values of I and M. After
some algebra one finds the following conditions for the possible solutions of (4):

+2mqgs F2q1 F2q1 + 1+ 204+ 12 — m?
1420+ 12 —m?2

>0,
5
+2mq F2qs F2qo + 1+ 20+ 12 — m? (5)
1420+ 12 —m?2

where [ and m are real numbers defined by L = lg% and M = mg%

We are going to analyze some special cases. The existence of the solution for

>0,

parallel (g1 = ¢2 = % or equivalently ¢; = ¢ = —%), antiparallel (¢1 = —¢2 = % or
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g1 = —q¢2 = —%) coupling of two rings with even number of electrons as well as the
trivial (¢1 = ¢2 = 0, ¢5, = 0, i = 1, 2) solution for rings hosting an odd number of
electrons is, in principle, proven since for any positive [ and m (in a typical system
! > m) conditions (5) are satisfied. The same takes place for two coupled rings,
one of which hosts an even while the other an odd number of conducting electrons
if one considers ¢; = % (or 1 = —%

Finally we analyze a parallel (¢1 = ¢2 = ¢) and antiparallel (¢; = —¢2 = ¢)

) and ¢2 = 0 or vice versa.

cases for |¢| exceeding L. For the first of above mentioned cases conditions (5) are
equivalent to

l+m>2¢—1,

while for the other

l—m>2¢—1.

The “excited” solutions, with |¢;| exceeding %, are very unlikely to obtain due to
large necessary values of [ and m. For a typical ring with a radius 500 A, thickness
5 A and N = 10* conducting electrons the value of [ is of the order of 1073, 1074,
i.e. it is too small to obtain the spontaneous flux bigger than |¢| < % One can
also see that for positive values of m to obtain “excited” spontaneous solutions
the values of selfinductance and the mutual inductance add constructively for the
parallel alignment while in the antiparallel case the mutual inductance weakens
the magnetic coupling and acts destructively.

Concluding this case we see that at zero temperature selfinductance and
mutual inductance are capable to maintain spontaneous currents only at the lowest
possible level provided at least one of the rings carries an even number of electrons.
The case of two coupled rings is important mainly for didactic purposes as the
calculations can be performed exactly and it helps to understand the nature of
magnetostatic interaction leading to spontaneous solutions. However in reality to
support the current in the absence of an external flux one needs a large number
of rings (channels) interacting via the magnetostatic interaction. Such a situation
will be considered in the following chapters.

3. The system of M coupled rings in a mean field approximation

Let us assume that we have M mesoscopic rings carrying currents in the
presence of the external flux ¢.. The calculation of persistent selfsustaining cur-
rents cannot be performed exactly for large number of rings. One needs to apply
some approximations.

The Hamiltonian of such system with the inclusion of the mutual interaction
of ring currents is of the form [2]:

1 M e¢e ? z J
B R

A=14=1 A=1 XM =1,A#M
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where R is the ring radius, p?, — 2‘5:% is the canonical momentum of the electron
of the i-th electron in the A-th ring, 7, is the current in the A-th ring, M, is the
mutual inductance coefficient and N is the number of electrons in a A-th ring.
The interaction is long range and depends strongly on the sample geometry.

The mutual inductance for two coaxial circular rings is given by [5]

Mo = po/BaRon [(% - k) K(k) - %E(k)] , (1)
where k2 = ﬁﬁz— R, is the radius of the A-th ring and z) s is the distance
between centers of the rings labeled by A and X'. K and F are complete elliptic
integrals.

The dependence of M/ on the distance between the rings centers for the
coaxial situation is presented in Fig. 1.
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Fig. 1. Mutual inductance in the case of coaxial (Eq. (7)) alignment of two rings.

A calculation for M >> 1 interacting mesoscopic rings cannot be done ex-
actly but we can perform, following [2], a selfconsistent mean field approximation
(SMFA) for the current—current interaction in Eq. (6).

Let us take a mesoscopic cylinder of length ! made of a set of stacked rings
of radius R. The effective Hamiltonian obtained in SMFA [2] is of the form

M Ny > 1.
Heg = o— ZZ [Pm_— (de+01)| + 51T, (8)
>\ 1i=1
where L = ”‘”;—Rﬂ is the selfinductance of a cylinder, 7 is the total current in the
cylinder, ¢; = LI and
M

I=3 (). (9)

A=1
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It follows from Eq. (8) that each electron feels an effective magnetic flux
which is a sum of an external magnetic flux and the flux ¢; coming from the
currents itself

¢ = ¢e+ o1 (10)
We see that the mutual interaction of currents from different rings results in a
selfinductance of cylinder.

Till now we considered only the magnetic interaction of currents from dif-
ferent rings. However a ring of finite thickness has many transverse channels and
we now take into account both the interaction of currents from different channels
in each ring and the interaction of currents from M stacked rings. The effective
Hamiltonian in the SMFA reads

M Mx No»

Heg = %ZZZ [P?,Q,\ - ﬁ(d% +é13)

A=1x=11i=1

2

1 1
772 2
+-L1 +§ g L>\<I>\> s (11)

2
a=1
where

drn = LI+ Ly(I))

16R 7
Ly = In——-].
A NOR<H o 4)

Ly 1s a selfinductance of a A-th ring. Here again the mutual interaction of currents

and

from different channels in a single ring results in a selfinductance of a ring. M) is

the number of channels in the A-th ring, M, = ﬂdg—fﬁ where d) 1s the thickness
of the A-th ring (dy < R) and a is the lattice constant. Ny, is the number of
electrons in the k-th channel of the A-th ring.

In the following, for simplicity, we assume that the rings are identical, the
extension to different rings is straightforward, but the precise calculations have to
be done then numerically.

Thus
- - L
orn=¢r=L(1+06)I = <L+M) L (12)
where
L/M o 16R 7
m,77,14:L_mROnd J, (13)

and the last two terms in Eq. (11) take the form

L(1 +8)I%

N | —

1 1 &
LT+ 2 LL): =
2L —1-2/\2_:1 )
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The flux ¢; contains now the contribution coming from the selfinductance L of
each ring and that from the selfinductance L of the cylinder, the parameter &
reflects the ratio of the two contributions.

4. Spontaneous flux and flux expulsion

It is well known [6, 7] that persistent currents in multichannel system depend
on the correlation of currents from different channels i1.e. on the shape of the Fermi
surface (FS). Assuming that each ring is made of a material of density p with flat
FS, the total current in the cylinder is given by the formula (9) with

(o]
(I) = Mr% > (n — %) fen (1), (14)
n=—0oQ
where n is the orbital quantum number for the electron going along the circum-
ference of the ring, frp(T) is the Fermi-Dirac distribution, ¢g = %, M, = T% is
the number of transverse channels of a single ring, a is the lattice constant.

In the following we discuss the 7" = 0 case. The temperature dependence of
the persistent and selfsustaining currents has been given elsewhere (see e.g. [6, 7]).

Let us consider at first a stack of rings with an even number of electrons in
each channel. Such rings react with the paramagnetic reaction to ¢.. Equations
(9), (10), (12) form the selfconsistent equations for the flux and one can look for the
spontaneous flux solutions in the absence of an external flux. After some algebra
one obtains the formula for spontaneous flux in a cylinder

1

¢s = TR T zuﬂso, (15)
+ L(1+6)M I
where Iy = %, N is the number of electrons in a single ring.

Assuming that the distance between the ring centers in the cylinder is b one
gets from Eq. (13)

b(In 188 %)

§=——4d 3/ 1
oy (16)
and the formula for ¢ takes the form
¢s = W%, (17)
Td2R(1+6)
where
A= 18
o pe? (18)

Assuming the electron density p as for copper p = 4 x 1072 A=3 we get A =
2.7x10% A.

We are now ready to discuss the solutions of Eq. (15) (or equivalently of
Eq. (17)) in different cases. For the set of densely packed rings, so that b < R,
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the parameter 6 is much smaller than one (§ < 1) and ¢ is determined by the
inductance L of the cylinder. For thin rings e.g. d ~5 A, R~ 10* A, b = 102 A:

ds & T x 1073¢,

i.e. 1t is negligible. However, ¢4 increases with increasing R and d and for e.g.

d~30 A, R~ 5x10* A, b =102 A one gets a substantial ¢,
s ~ 0.33¢0¢.

One should stress that the considerations performed here and in [4] neglect the
r dependence of the flux (r is the coordinate measured along the ring thickness)
and are thus valid for d < R.

Therefore, contrary to conclusions in [4], we will never obtain the maximal
value of ¢, o™ = 4’2—” in a cylinder of small thickness and R in the mesoscopic
regime. The calculations for d > R are in progress and results will be published in
a forthcoming paper.

The above calculations were performed for material with flat FS. There is
then the perfect correlation of currents from different channels and the current is
the strongest.

If the rings forming a cylinder are made of a material with a spherical FS
there is almost no correlation of currents from different channels [6, 7] and the
formula for the spontaneous flux takes then the form

S 1
¢sPh = T do. (19)
VmdRa

In this situation we get much smaller spontaneous flux ¢$P" &~ 0.1¢q for the set of
parameters as in the previous example.

Till now we discussed the solutions of Eq. (17) in the case of densely packed
rings (b < R) where the effect of ring selfinductance was negligible. The influence
of L increases with increase in the distance b of the ring centers and for b &~ R
both L and L determine the magnitude of spontaneous flux. With further increase
in b, for 6> R, 6 > 1 and ¢ is determined mainly by L. If one considers at first
rings with flat F'S and even number of electrons in each channel, one obtains from
Eq. (17) in the limit b > R the following equation for ¢s:

1

0. (20)

¢s =
2t EmgEsy

We see that ¢4 increases with increasing d and for e.g. R = 10* A, d = 3x 102 A we
obtain a relatively large spontaneous flux

b5 = 0.210.

However, with reducing the thickness d of the ring, ¢ decreases and for quasi 1D
ring we get ¢s &~ 10™*@g. Thus the statement in [4] that ¢5 approaches its maximal
value ¢"®* = 4’2—” as the thickness of the wire is vanishingly small is incorrect.
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If it were true then each atom, molecule or quasi 1D ring made e.g. by means
of litography could expel the flux or produce the large spontaneous flux which is
not the case. Although in principle the selfinductance L diverges as d — 0 it is only
the limit in a mathematical sense and for the smallest realistic values of d and R
in the mesoscopic regime L is finite and small. The product LIy which matters is

% — T and gives substantial values of ¢, only for relatively

proportional to d?(In
thick rings. Thus the selfinductance of electrons from a single channel (i.e. in a
quasi 1D ring) is unable to support the flux. Only the collective action of electrons
from many different channels can lead to selfsustaining flux.

If the rings are made of a material with spherical FS one obtains in the limit

b > R the following formula for the spontaneous flux ¢$Ph:

1
qf)zph — 2_|_s—7r>\2¢0' (21)

Zalln 155 7)

Comparing Eq. (20) with Eq. (21) we see again that

PPN < ¢,

where ¢s was calculated with flat FS. For FS intermediate between spherical and
flat spontaneous flux will be intermediate between ¢$P* and ¢s.

Till now we discussed rings and cylinders exhibiting a paramagnetic reaction
to the external magnetic field. Let us investigate now a mesoscopic ring made of
a material with flat FS when the number of electrons in each channel is odd [8].
Such ring reacts with a diamagnetic reaction to ¢. (¢e < %—”) and making use of
Eq. (9) and (14) one obtains the following formula for ¢; = LI:

¢I = —O[d), (22)

where o = (%)2%.
Inserting Eq. (22) into (10) we obtain the formula for the total flux ¢ in the

ring
_ ¢
¢= 1+a’

We see that we get a substantial screening of the external flux ¢ if o« > 1, 1.e.if

(23)

the ring has many transverse channels.

Foreg. R=10*A, d=2x 102 A, o = 0.34 and

¢ = 0.75¢..
Increasing d to e.g. d = 3.2 x 10?2 A we get o = 0.78 and ¢ = 0.566. so we obtain
a relatively large flux expulsion. However, for very thin, let us say quasi 1D ring,
a €1, ¢ = ¢, and we can neglect the selfinductance effect. We can easily check
that in the case of a ring with spherical FS exhibiting diamagnetic reaction to ¢.
the flux expulsion is much smaller than in the former case.

The calculations of flux expulsion can be extended to the case of mesoscopic
cylinder made of a set of rings exhibiting a diamagnetic reaction to ¢..
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Making use of Egs. (10), (12) and (9) one obtains for total flux in the system

Pe
"= Trar 29
where
R _ 7
o= TR b(ln 27 — %)
8A2h TR

The flux expulsion increases with increase in the thickness d of the rings and with
decrease in the distance b of the ring centers. Assuming e.g. d =35 A, b =102 A,
R =10* A one gets

¢ = 0.59¢..

5. Conclusions

In macroscopic systems magnetostatic interaction is known to be small [9],
however in mesoscopic systems this interaction, giving the internal magnetic flux,
can be important because magnetic flux has a very dramatic effect on such systems
leading e.g. to persistent currents.

The system of two magnetically coupled quasi one-dimensional rings can, at
zero temperature, exhibit different spontaneous flux solutions in the first period of
the current—flux characteristics provided at least one of the rings has an even num-
ber of electrons. The existence of higher realizations is very unlikely and depends
on the values of coupling constants.

To obtain the spontaneous flux solutions in real systems one needs many
interacting entities. We have discussed the role played by the mutual interaction
of currents in the multichannel system and have shown that when taken in the
SMFA it leads to selfinductance terms in the Hamiltonian producing an internal
magnetic flux. Let us notice the minus sign in Eq. (6) which is pertinent for the
interaction of persistent currents in microscopic and mesoscopic systems. The sign
plus in Eq. (6) would be used for the interaction of dissipative currents where the
energy should be supplied from the outside to maintain the current [5].

In the case of a cylinder made of set of stacked rings we should take into
account both the selfinductance of each single ring (L) and that of a cylinder (L)
and the general formula for ¢4 contains both terms. However, when the rings are
densely packed (b < R), the formula for ¢ is determined mainly by L. Tt justifies
the approximation used by us in the earlier papers [2, 7] in which we neglected
the ring selfinductance. If we increase the distance b between the rings forming a
cylinder, the ring selfinductance becomes important and for b > R, L determines
the magnitude of ¢s. The rings are then so far apart that L coming from the
mutual interaction of different rings is negligible.
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We have shown that the magnitude of spontaneous flux depends on the
thickness d of the ring and on the shape of the FS. For very thin ring ¢, is
negligible contrary to some statements in the literature [4] but it increases with
increase in d and with increase in the curvature of the FS.

We have also shown that the rings and cylinders exhibiting the diamag-
netic reaction to ¢. give a substantial flux expulsion if they have many transverse
channels.

The calculations presented above were performed under the assumption
d € R, but it will be shown in a forthcoming paper that for thick rings and
cylinders one can obtain a full flux expulsion and quantized flux trapped in such
nonsuperconducting structures.
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