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We investigate a weak-coupling approach to superconductivity in the
density of states that develops in the two-dimensional lattice with the van
Hove singularity located at the Fermi level. Exact analytical expressions for
the superconducting order parameter at zero temperature (A(0)) and for dis-
continuity in the specific heat at critical temperature (AC) were derived. We
show that the presence of the logarithmic singularity hardly affects the ratio
2A(0)/kTc, whereas the temperature dependence of AC can pronouncedly
deviate from the standard BCS result.

PACS numbers: 74.25.Kc

1. Introduction

Since 1986 [1] a lot of experimental and theoretical work has been carried
out in order to understand the mechanism of high-temperature superconductiv-
ity. Despite serious efforts the basic questions related to this phenomenon remain
open problems. The qualitative and quantitative differences between the systems
under consideration and conventional superconductors show up both in normal
and superconducting state. These differences are mainly attributed to the pres-
ence of strong Coulomb interaction, phonon-free contribution to pairing correla-
tions [2] and the two-dimensional character of high-temperature superconductiv-
ity, which develops in copper—oxygen planes. Although, it 1s rather widely believed
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that the high-7. superconductors cannot be properly described within the usual
BCS theory, it seems interesting to investigate which properties of these materials
require a completely new approach and which can be explained within a modified
weak-coupling theory. In particular, it has been shown that the van Hove singu-
larity can result in an important lowering of the isotope shift exponent [3] and can
lead to a positive curvature of the upper critical field [4]. Therefore, this particular
feature of the two-dimensional density of states can lead to qualitative differences
with respect to results obtained within the standard BCS approach. In order to
obtain a superconducting phase transition one needs a finite coupling between the
2D planes. However, we assume that this coupling is small enough to neglect its
contribution to the gap equation.

2. Results and discussion

In the present paper we discuss the impact of the van Hove singularity on
the basic superconducting properties. We obtain accurate analytical expressions
for the critical temperature (T¢), the order parameter at zero temperature (A(0)),
the ratio 2A(0)/kT., temperature dependence of the order parameter and the dis-
continuity in the specific heat that occurs at the superconducting phase transition.
The problems considered in the present paper have also been discussed by Goi-
cochea in Ref. [5]. The autor obtained self-consistent equations for T;, A(0), and
used approximate temperature dependence of A near T... Here, we present explicit
analytical expressions for these quantities as well as for the ratio AC/T,. There is
no essential difference between results derived in Ref. [5] and presented here. The
analysis shows that the van Hove singularity in the conventional BCS theory can-
not explain the large values of the order parameter A(T') near T, and the specific
heat jump [6].

Our starting point is the BCS gap equation
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where V is the pairing potential and wp represents the characteristic phonon
frequency. We consider a two-dimensional system where a logarithmic singularity
in the density of states is situated at the Fermi level

: (2)

In particular, for a two-dimensional square lattice and nearest-neighbor hopping

p(e) = by In bi

2

integral ¢ the density of states is accurately reproduced with b = —0.04687¢~!
and by = 21.17796¢ [4].

Let us start with a discussion of the gap function at zero temperature, A(0).
For T' = 0 the integral on the right-hand side of Eq. (1) can be exactly evaluated [7].
Then
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where Li,(z) is the polylogarithm function Li,(z) = Y 5y 2%/k™ and Lix(1) =
72/6. When carrying out the elementary algebraic transformations in (3), we ob-

tain a simple expression for the gap function

A(0) = 2wp exp (—Ai) , (4)

1

where

1 wp 5 [Wwp 2 71'2%
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On the other hand, one can adapt the formula for the superconducting transition
temperature derived in Ref. [3]:

kT. = abs exp (—/\i) , (6)

2

where
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and a = 2¢¥ /7 &~ 1.13 (v is the Euler constant). Then one, can easily obtain the
ratio

2A(0) _ dwp exp (i _ i) . (8)
kT abs A M

Figure 1 shows the ratio of the gap parameter and the superconducting transi-
tion temperature as a function of the pairing potential. Here, we compare results
calculated with the van Hove singularity with the value obtained within the stan-
dard BCS approach with a constant density of states (2A(0)/k7T. = 3.52). One
can see that the logarithmic singularity in the density of states results in a slight
enhancement of this quantity. The deviation from the standard BCS result is more
visible for higher superconducting transition temperatures. However, the van Hove
singularity itself cannot explain the experimental values of this ratio, which have
been obtained for high-temperature superconductors [8].

In order to calculate the temperature dependence of the order parameter
A(T) close to the transition temperature we follow the standard procedure dis-
cussed in Ref. [9]. With the help of the fermionic Matsubara frequencies, w,, one
can rewrite Eq. (1) in the form

wp 1
1= 2VkTZ/O dep(e) — T AT 9)




404 R. Szezesniak, S. Grabinisk:

3.50 I 1 1
0.0 0.5 1.0 1.5 2.0

Fig. 1. The ratio 2A(0)/k7: as a function of the pairing potential V. The horizontal
line indicates the value obtained within the standard BCS approach with a constant

density of states.
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Fig. 2. Kri as a function of temperature calculated for different values of the super-

conducting transition temperature. See the text for details (Eq. (13)).
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Fig. 3. K2 as a function of the transition temperature. See the text for details

(Eq. (17)).



The van Hove Singularity . .. 405

The Taylor expansion around 7; yields the following equations:
1 N 1 AYT)
w22 ANT) T w2 4?2 (w2 4e2)?

which allows one to calculate the superconducting order parameter A(T)

samry [Ny () e o (@) o

In the BCS regime kT < wp. Therefore, when calculating the right-hand side of
the above equation one can assume that wp — oo. This simplification allows one

(10)

to obtain an explicit expression for the gap function

A(T) = 7kT (%(3)) (1 - %) ' Kr(T), (12)

where

1
kT T-T. :
In (abQ) + 7.

In (%) — [;—SIHC(S)]SIS —-1.1

and ¢ denotes the Riemann zeta function. The difference between results obtained

Kr(T) = (13)

with a constant density of states [9] and the van Hove singularity shows up in the
presence of Kri(T). Figure 2 shows this quantity as a function of temperature.
One can see that Kr; & 1. Therefore, the presence of logarithmic singularity
also hardly modifies the temperature dependence of the order parameter when
compared to the standard BCS approach.

The specific heat jump that occurs at the transition temperature can be
determined from the difference of thermodynamic potential between the super-
conducting and normal states [9]

9?AQ
where
2 @)
_ / N2 )%
AQ_/O dav(a)? = (15)

In the presence of the logarithmic singularity the integral, which enters the above
equation, reads

AQ = —%(wkT)z (L) (1 - %)2 Kra(T), (16)

where

(17)
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Then, one can easily find an analytic expression for the jump of the specific heat

_ 8 2

AC =K rz(TC)T@)(ﬂ-k) T.. (18)
Here, Krs represents a deviation from the linear dependence between AC' and T¢
which can be obtained with a constant density of states [9]. Figure 3 shows Ky
as a function of the critical temperature. In the presence of the van Hove singular-
ity the ratio AC/T, decreases with the enhancement of the critical temperature,
whereas in the standard BCS formulation this ratio does not depend on the model
parameters. Therefore, the van Hove singularity leads to a qualitative modification
of the specific heat jump that occurs at the phase transition.

3. Conclusions

In the present work exact analytical formulae for the zero temperature energy
gap, the ratio 2A(0)/kT;, temperature dependence of the order parameter near
T, and the specific heat jump at the phase transition are derived with the van
Hove singularity. Our results show that within a weak-coupling approach the ratio
2A(0)/kT, hardly depends on the details of the density of states. In particular, the
van Hove singularity leads only to a negligible enhancement of this quantity. The
temperature dependence of the order parameter is also rather insensitive to the
presence of logarithmic singularity in the density of states. However, this particular
feature of the two-dimensional superconductors can show up in the jump of the
specific heat, which takes place at the superconducting transition temperature.
Here, one finds a qualitative difference with respect to the standard approach,
which assumes a constant density of states. Namely, in the presence of the van Hove
singularity the ratio of (AC)/T. decreases with an enhancement of the pairing
correlations. This result suggests that two-dimensional features may be important
when considering behavior of physical quantities at the superconducting phase
transition. Note that this occurs on the BCS level. Within the strong-coupling
theory the exact results are not yet accessible.
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