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New calculations of resistivities of liquid metals, Na, K, Rb, and alloys,
Na—-K, Na—Rb, K-Rb, were carried out by using a variant of the Kubo for-
mula that explicitly contains the temperature 7. The results come closer
to the experiment than the previous ones that use the Ziman formula of
resistivity.

PACS numbers: 72.15.Cz

1. Introduction

Ziman formula [1] of resistivity p has been, and still continues to be, the most
widely used expression in the calculation of liquid metal and binary alloy resistivi-
ties. This expression contains a finite integral over the product @3a(Q)]¥(Q)|* and
the upper limit is cut off at @ = 2ks. Here 9(Q) is the pseudopotential due to a
single ion, a(Q) is the structure factor and is related to structure amplitude S(Q)
via [S(Q)|? = (22/V)a(Q) and 2, V are volumes of the unit cell and the system
respectively. If we look at it, we can see that it does not contain temperature de-
pendence explicitly. As we know from the experimental curves of structure factor
a(Q), temperature dependence comes only from this factor. Therefore, if one wants
to obtain a temperature behaviour of the resistivity of any metal, one should use
a structure factor a(Q) corresponding to each temperature. This is correct, but
it i1s not adequate. The correct formula thus should involve the temperature T'
clearly. To achieve this purpose, we have used an expression given by Eq. (1.1) in
an earlier paper [2] which is given as Eq. (3.1) in this work. Since the equation
is in the form of a ratio, there i1s a tendency toward balancing the errors coming
from the neglect of higher order terms. However, in the Ziman formula there is no
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such a structure, where the errors tend to add up together. At the same time this
expression included the temperature dependence through some weight factors in
the integrals involved in &/ and o/ (detailed explanation will be given later or see
Ref. [2]). To obtain the temperature behaviour of the resistivity of the pure liquid
Na and Rb, Ashcroft and Lekner [3] have used the structure factors a(@) which
correspond to different temperatures obtained by changing the packing fraction 5
for different pseudopotential ¥(Q) in the Ziman formula. We have also used the
structure factors obtained from the same packing fraction 5 as theirs in Eq. (3.1)
instead of the Ziman formula. It is seen from Fig. 11 that our results are much
closer to the experimental values than the other results.

In the calculation of the resistivity of liquid binary alloys as a function of
concentration x, some physicists have focused on the modification of the pseu-
dopotential so as to obtain satisfactory results compared to the experiment. For
this object Ashcroft and Langreth [4] used the volume dependent pseudopotential.
On the other hand, Gassert et al. [5] have shown that Fibar—Ziman formalism
does not allow the interpretation of the experimental resistivity, if hard-sphere
structure factors are used and they suggested that the pseudopotential (and the
Ziman formula) must probably be corrected by effective masses. Correction [6, 7]
can be made by using

p = [{m” (ko)) [Nk, *]pr, (1.1)
where pr stands for the electrical resistivity in the Ziman-type theory. {m*(ks)) is
the density-of-states effective mass averaged over the Fermi surface and Ny, is the
normalization constant of the state k. The values of the calculated resistivity with
the Ziman formula as a function of concentration = generally are below the exper-
imental curves. Therefore, by using the above equation one achieves a close curve
to the experimental one, because the pre-multiplier (m*(k¢)) is bigger than unity,
although not very much. This is seen from Table III given in Ref. [6]. Although in
this work we did not use such a correction, we have obtained a curve close to the
experiment. A detailed argument will be given in the next section.

Besides the mentioned conventional techniques recently some modern tech-
niques such as computer simulation, direct evaluation of conductivity formula by
ab initio molecular dynamics simulation have been developed [8-10]. However, al-
though it has been possible to come very close to the experiment in some property
calculations, these new techniques have not reached yet to a satisfactory level in
transport property calculations. Qur purpose has been to show that the Kubo
formula gives better results than the simple Ziman equation of resistivity under
the same assumptions.

In Secs. 2 and 3 we introduce the mathematical model of the problem and
formulation of resistivity respectively. In Sec. 4 the correlation functions «/ and
a) are calculated. Sections 5 and 6 contain the calculation of resistivities of liquid
pure metals and alloys, and we discuss the results in the final section.
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2. Pseudopotential model for liquid metals and alloys

In liquid metals the coupling between the carriers and the rest part of many-
-particle system is given by the local pseudopotential U [11, 12]

U=> S(g)0(q)ai,,a, (2.1)

where S(q) and J(q) are structure amplitude and form factor, az'_l_q and ap are
creation and annihilation operators of carriers with wave vectors k + ¢ and k,
respectively.

Equation (2.1) can be extended to binary alloys [13] by replacing the square
of the absolute value of S(¢)?¥(q) involved in it by

\/m22(Q)79%(Q) + 2[z(1 = 2)]'?a12(¢)02(9)V1(q) + (1 — #)ar1 ()93 (g)- (2.2)

Here 9;(¢) are the interactions of an electron with ions of species ¢ (1 = 1, 2)

immersed in the same screening cloud of electrons. x is the concentration of
species 2. a;;(¢) are partial structure factors describing a mixture of randomly
distributed hard spheres with different diameters, which is the hard-sphere mo-
mentum-space solutions of the Percus—Yevick equation for the radial distribution
function in a classical fluid [14]. The a(q) derived in this way gave very good
agreement with the X-ray and neutron-scattering data around the first peak. A
detailed information about it then will be given in the text. Werner and Fresard
[15] in their work on temperature dependence of transport coefficients in liquid
and amorphous metals have also used the same model. In order to facilitate di-
rect comparison of our results with the Ziman expression based calculations we
preferred the hard-sphere model.

3. Formulation of resistivity for liquid metals and binary alloys

As we mentioned above, because the Ziman expression is insufficient, we need
an alternative formula containing all these important effects. For this we can rely
on the well known Kubo formula. In this work we used the following expression
[2] based on the Kubo formula for the calculation of the resistivity of pure liquid
metals and alloys

132
- % (3.1)
"
where «f and «) are first and second derivatives with respect to frequency w, of
real parts of force—force correlation function [16] a(w) (formula (2.18) in Ref. [16]).
Other symbols have their customary meaning. For a pure liquid metal o/ and o/
are given by [2]

27
L= 5> W PIS(g)|0H(g)ni 6 (AE), (3.2)
3 v
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27
o = = ST HIS@) P (AR, (3.22)
k.q

If we use Eq. (2.2) in Egs. (3.2), (3.2a), for «/. and &/ connected with binary alloys

we have
27
of = 5 DB {wlSan(0) P03 ()n 8 (A E)
k.q

+2[x(1 = 2)]2[S12(g) [ 01(q) D2 ()8 (A E')

+(1 = 2)|Su ()07 (g)n} 8" (AE")}, (3.3)

2
off = =5 S0 (] Saa(g) P9 (g8 (AE)
k.q

+2[x(1 = 2)]V2[S12(g)P01(9)02(q)n 8" (AE')

+(1 = 2)[S11(g) P97 (g)n} 6" (AE")}. (3.3a)
We shall use these expressions in the resistivity formula (3.1). The sums in the
formulae (3.2), (3.2a), (3.3), and (3.3a) will be carried out in the following section.

4. Evaluation of «/ and o/

In order to calculate the resistivity of the pure liquid metals from Eq. (3.2),
we should do the sums in Eqgs. (3.2), (3.2a). These sums may be carried out by
turning them into integrations in the usual way by using the relations

Z - #/d?’q, Z_> #/d%. (4.1)

k

During the calculation of the resistivity, we assume that the energy spectra of the
considered system is parabolic
hk?
E(k) = ) (4.2)

2m

If we denote the angle between the wectors k and ¢ by 6 and call cosf = v, the
energy difference AFE’ becomes

2 2 2
hqu+hq
m 2m

AFE =

(4.3)

to obtain the condition AFE’ = 0, the variable ¥ must be restricted to negative
region —1 < v < 0. Integration is carried out in the order dv —d(hq) —d(hk)
because with this order, during the transformation of delta functions into simpler
forms Jacobians never become zero, otherwise nothing fixes this order. A detailed
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information about the calculation of o and «] are given in Appendix and the
results are

f Vfﬂi’;?zf? 5 (4.4)
h= [ ae@uQr@—r o (1) (1.49)
0 o (B0 1
" Vﬁ;ﬂ'z/gﬁﬂ L. (4.5)
L oy o (% 1))
b= [ deed@rQ) ool (2 )] 1T
| o o ()
BEf / @@ {exp [ﬁEf (Q; - 1)] + 1}2. o
On the same basis for the binary alloys «/. and «!/ are given by
i N (4.6)

exp [6Ef (Q; — 1)

{exp [oE: (% -1)] + 1}2

L=z /0 1QQa2(Q)9*(Q)

V32 m2ki2
2473h

"o__

I, (4.7)
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o (521
{own [om (% - 1)] 41}

exp 35 (4~ 1)]
{exp o7 (£ —1)]+1}

o (1)
{exp |08 (% —1)]+1}2
o (1)
{exp [ (2 —1)]+1}
o (1)
{exp [ (2 —1)]+1}
exp 35 (£~ 1)]
{exp [om: (£ —1)}+1}2
o (1)
{exp o7 (2 —1)]+1}

We shall use these expressions in the resistivity formula (3.1).

x [ee]
b= /0 1QQax(Q)02(Q)

42 /0 T 4QQax(Q)92(Q)P(Q)

a1 =)

A2 [ d0ua@n@ua(@)

N / T 4QQ%a(Q): (Q)I4(Q)

N /0 T 4QQ%a1(Q)9, (Q)92(Q)

(1-2)
* BE;

/0 " 1QQu(@)92(Q)

+AwdQQ%wameaQ> (4.7a)

5. Electrical resistivity of liquid metals

In this section we have applied the resistivity formula (3.1) to the pure liquid
metals Na, Rb, K in order to see the temperature behaviour of them. To obtain this
object, we should calculate the integrals 77, I» given by (4.4a) and (4.5a) and which
are involved in o/, and «! of the resistivity formula (3.1). Since integrals I1, I» both
contain a(®) and J(Q), the values of these integrals depend on these sensitively.
During the calculation of resistivities of three different liquid metals Na, K, Rb
we use the theoretical curve of a(Q), which is the solution of the Percus—Yevick
equation. The curve of a(Q) so obtained depends only on one parameter, a general
packing fraction 7, which is related with hard-sphere diameter ¢ by n = (7/6)no3,
and n is the free carrier concentration. The form factor J(Q) of the pseudo-atom
is supposed to be weaker and much more rapidly convergent than the Fourier
transform of the true atomic potential, but which yields essentially the same band
structure.
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In obtaining the resistivity of liquid Na, we have used the form factor 9(Q) of
the model potential of Heine and Abarenkov obtained by Animalu and Heine whose
data were tabulated as table 8.4 in Harrison’s book [12] and in order to see the @
dependence clearly we drew Fig. 1 using these data, and for the structure factor
we have used a theoretical curve obtained from the solution of the Percus—Yevick
equation as given in Fig. 2. The latter contains some curves corresponding to
different packing fractions n which are taken from the Ashcroft et al. work [3]. In
literature 7" dependence of 7 is often determined through using Hasegawa formula
[17], however since we wanted to compare our results with those of Ref. [3], we
have used their i values. Temperature dependence of 7 can also be seen from
Fig. 3.6 of Waseda’s book [18]. For example we read n = 0.462 at 7" = 100°C
and n = 0.414 at T = 300°C from his figure for liquid Na. We calculated the
resistivities as p = 9.05 pf2 cm and p = 14.32 p2 cm corresponding to the above
1 values respectively. Similarly for liquid K we read n = 0.462 at T" = 65°C and
n = 0.423 at T = 195°C and calculated resistivities are p = 12.43 uQ ¢cm and
p = 20.99 p2 cm respectively. These results do not differ very much from the ones
in Table I and in Table III which shall be presented shortly.
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Fig. 1. Form factor of the model potential of Heine and Abarenkov for sodium as

function of the momentum transfer ¢ (drawing based on the data from [12]).
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Fig. 2. Structure factor a(@Q) of a fluid of hard spheres according to the Percus—Yevick

equation for sodium for different packing fraction 7.
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TABLE 1

Temperature dependence of the resistivity of liquid sodium. The
values of the resistivities in 2 cm unit. The third column is our
resistivity values and the fourth is the experiment. The other
columns show the resistivities given in Ref. [3] for different form

factors.
T [°C] [ n = (x/6)n0" | o [0 cm] | poxp | pc | pin | puaa
100 0.456 9.51 9.6 7.6 9 5
160 0.437 11.67 11.7 | 9.1 10.7 5.9
200 0.424 12.99 13.1 | 10.3 | 12.1 6.6
240 0.423 14.39 14.5 | 11.4 | 13.3 7.2
300 0.396 16.48 16.6 | 13.6 | 15.4 8.3
TABLE 11

Temperature dependence of the resistivity of liquid Rb. The val-
ues of the resistivities in {2 cm unit. The third column is our
resistivity values and the fourth is the experiment. The other
columns show the resistivities given in Ref. [3] for different form

factors.

T[°C] | n=(x/6)nc® | p [u2 cm] | pexp | pc | pua | pHaa
40 0.459 21.32 22 8.7 | 25.4 7.5
160 0.412 32.38 33 13.9 | 36.1 11.7
240 0.395 39.69 40.5 | 16.8 | 41.1 13.8
360 0.365 51.22 52 22.8 | 50.9 18.1

TABLE IIT

Temperature dependence of the resistivity
of liquid potassium. The values of the re-
sistivities in {2 cm unit.

T [°C] | n=(x/6)no” | p [uQ cm] | pexp
65 0.443 12.6 13
130 0.438 15.6 16.7
195 0.433 20 20.3
260 0.428 24 24.5

All the numerical results so obtained for liquid Na are given in Table I.
Values of 2 and Ey required for these calculations have been taken as 39.3 x
10739 m3, 0.30 x 10718 J, respectively [2].
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In the similar way, for Rb, K we use the values of 9(Q) and a(Q) given by
Fig. 3, Fig. 4, Fig. 5 and Fig. 6 respectively. Numerical results are listed in Table IT
and Table III.
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Form factor of the model potential of Heine and Abarenkov for Rb as function

of the momentum transfer ¢ (drawing based on the data from [12]).
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Structure factor a(@) of a fluid of hard spheres according to the Percus—Yevick

equation for Rb for different packing fraction 7.
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Form factor of the model potential of Heine and Abarenkov for K as function

of the momentum transfer ¢ (drawing based on the data from [12]).

For Rb, values of §2 and E; required for these calculations have been taken
as 9.54 x 10729 m3, 0.29 x 10718 J, respectively [7, 12].

In the calculation of the resistivity of the K we used the 79.5 x 1073 m3,
0.327 x 10718 J for £2, Ef, respectively [7, 12].
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Fig. 6. Structure factor a(Q) of a fluid of hard spheres according to the Percus—Yevick

equation for K for different packing fraction 7.

For the liquid K, we have determined the parameter 5 by fitting a(Q) to give
the correct height, amax, of the structure factor as described in Ref. [3].

If we look at Tables I, II, III, it is seen that for these liquid metals, Na,
Rb, K, each value of the resistivity corresponding to the different temperatures T’
we obtained is closer to the experimental one than the values obtained by other
means. The detailed argument connected with these results will be given in the
conclusions.

6. Electrical resistivities of liquid alloys

In obtaining the resistivity of liquid binary alloys, Na—K, Na—Rb, K-Rb, we
use Egs. (4.6), (4.7) involved in the resistivity formula (3.1) in place of Eqs. (4.4),
(4.5). During the evaluation of these expressions we use again the same form
factor ¥(Q) for each component of the alloys, but partial structure factor have
been considered. Some of the partial structure factors calculated, to be used in the
calculation of the resistivity in this paper, using the solution of the Percus—Yevick
equation and denoted by a;;(Q) are shown as examples in Fig. 7.

The variables 5, «, and « of the partial structure factor specify the system. 5
is the total packing fraction for the mixture. Although the Percus—Yevick equation
shows no singularities for 5 < 1, the region beyond n = 0.74 is nonphysical, since
the fluid then has a packing density greater than that of the close-packed solid. «
is defined to be the hard-sphere ratio of the alloys. It takes the values between 0
and 1. z is defined being the concentration of larger spheres.

A plot of resistivity for the Na—K alloys against x is given in Fig. 8. The
experimental data are taken from Hannephof et al. [19].

In Figs. 9, 10 we show the experimental and theoretical resistivity curves
which are plotted versus z for Na-Rb, K-Rb liquid alloys.

When we look at Figs. 8, 9, 10 we conclude that the concentration behaviour
of the resistivity of liquid binary alloys can be roughly described by Nordheim-type
parabolas as expected, and they are very close to experimental curves. A detailed
information will be given in the conclusions.
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The partial structure factors presently calculated and used for (a) the Na-K

alloys at 2x = 0.2 and 7' = 100°C, (b) the Na—Rb alloys at zrp = 0.2 and T" = 100°C,
(c) the K-Rb alloys at zrp, = 0.2 and T = 100°C.

Fig. 8.

0.0 0.2 04 06 08 10
45

( S? ’ T T T T 45
ppseem o
| —m—p é » 40
35] | T Py 135
9
30 - 30
b d
251 25
20 20
15 15
n=0.443
104 - 10
n=0.456
51 -5
o T T T T 0
0.0 0.2 04 06 08 10
X

Electrical resistivity calculated using Eq. (3.1) for Na—K for o = 0.8 at 100°C,

denoted by (—m—). The corresponding experimental results are represented by (—e—).
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Fig. 9. Electrical resistivity calculated using Eq. (3.1) for Na-Rb for o = 0.9 at 100°C,

denoted by (—e—). Corresponding experimental results are represented by (—m—).
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Fig. 10. Electrical resistivity calculated using Eq. (3.1) for K-Rb for o = 0.7 at 65°C,

denoted by (—e—). Corresponding experimental results are represented by (—m—).

7. Conclusions

Our results for liquid Na are given in Table I and Fig. 1la. In obtaining
these we used the same pseudopotential and structure factor as used in Ref. [3],
but the resistivity formula Eq. (3.1) we used was different. As is seen from Fig. 11a
our resistivities are much closer to the experiment than Ashcroft and Lekner [3].
Table IT and Fig. 11b show the results of our calculations for Rb, these values are
also closer to the experiment than the results of Ref. [3]. Table IIT and Fig. 11c¢
are about the resistivities of K, which are close to the experiment. There is a real
improvement in all the results which comes from the explicit T dependence of the
resistivity formula Eq. (3.1) based on the Kubo formula.

The results for Na—K alloy are shown in Figs. 7a, 8. It is seen from Fig. 8 that
our resistivity values are closer to the experiment than all the results of Refs. [4, 6]
and [7]. Besides Ref. [3] uses volume dependent pseudopotential and we use the
standard one which is widely known in the literature. Since the resistivity depends
sensitively on the choice of pseudopotential we avoided any changes on 1t. On the
other hand, in Refs. [6] and [7] they use a correction factor to the Ziman equation,



Electrical Resistivity of Liquid Metals . .. 397

100 150 200 250 300
p(uSRem) T T T T T
16 | A Pow (a) 16
- b /
14 |4 n 414
T s
12 Prsa /‘///A / 1,
/
104 / v - 10
2
ol s
-
6| // 6
S
4 4
2 -2
0 T T T T T 0
100 150 200 250 300,
T(C)
0 50 100 150 200 250 300 350 400
T T T T T T 55

55
cm
pluse ’50_ ——p, (b) * 5
45| 7 Peo 45
wl| P 40
sl P '/ 35

VV‘
o / bk
/ . =

254

7 ‘/ 110
5] 45
0 T T T T T T T 0
0 50 100 150 200 250 300 350 400
T(C)
50 100 150 200 250 300
T T T T T
25-] 25
1
pluSecm) —"—p, (C) /
ur
20 —— L | 120

0
T T T T
50 100 150 200 250 300

T(c)
Fig. 11. Temperature behaviour of the resistivity of the pure liquid metal (a) for Na,
(b) for Rb, (c) for K.

given by Eq. (1.1). By this they improved their results greatly, but since our results
are already close enough to the experiment, we did not force ourselves to use such
a factor.

For Na-Rb and K-Rb alloys we give the results in Figs. 7b, 9 and 7c¢, 10
respectively. Again resistivity versus concentration curves are satisfactorily close
to the experiment and similar arguments as said for the Na—K case can again be
repeated here.

There are recently developed modern techniques based on computer sim-
ulation. We are aware of this fact, but we saw that these techniques are, at the
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moment, very far from being satisfactory. For example, if we look at the Silvestrelli
et al. work [9] on electrical conductivity calculation in ab initio simulations of met-
als application to liquid sodium, their Fig. 10 shows that calculated conductivities
do not agree with the experiment. This fact is expressed in their words as “we find
that, even using a proper k-point sampling, our results are in agreement with the
experimental data for temperature higher than 700 K only”. This shows that this
kind of numerical work, although very attractive, has not reached to satisfactory
level even for the simplest liquid alkali metal sodium.

Another example of a modern study is the Kirchhoff et al. work [8] about
structure, dynamics, and electronic structure of liquid Ag—Se alloys investigated
by ab wnitio simulation. Calculated conductivity results are given in their Table V
at different material compositions x. In their words they say that “as x increases,
conductivity first increases dramatically to /& 1500 Q~! cm~! at = 0.42 and then
decreases slightly to & 1250 Q=1 ¢m~! at # = 0.65. These values are 3—4 times
higher than the experimental values”. They dare to attribute this discrepancy to
the Kubo formula itself by saying “we believe that these large discrepancies with
experiment arise from the approximations implicit in the Kubo-Greenwood ap-
proach”. We do not carry their view, because the Kubo formula is universally
accepted, so it is better to question their technique. We can give maybe other ex-
amples of work that are similar to the above mentioned ones, for example Kaschner
et al. [10].

As a result we can say that in this work we obtained better results without
using the Ziman formula.

Appendix
In this appendix first we evaluate o from formula (3.2)

St [ dtantst ISP o)

, 27

o, = —%5
" 3R

0 2 2 2
x/ dvs’ (MH g ) (A.1)
— m

1 2m

where d¢ integration has been carried out. If we use the relation

/ _ ! e —_x f”(l‘o) r—x
Y1 = e [6( 0+ L o>], (A.2)

with zg being the root of the f(zg) = 0, we have

h2kq h2q? m? hq
/ _ / A
’ ( m U om ) T h?k2h?¢2 o\ 20k ) (A.3)

The root vy is given by vy = —hq/2hk. If we substitute (A.3) into (A.1) and do
necessary integrations
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, 21 Vm?

o = ﬁmzh k2/ d(hq) h2q2|5( )179%(q)

o) s fa)]. a)

No contribution comes from the first delta function inside the square bracket
to «l., but when we calculate o) later on, the corresponding term then will be
hqé'(hq/2hk) and there will be contribution owing to the relation z6'(x) = —6(x).
After turning the hk sum into integration, the integral over hk should be made
dimensionless in order to carry out it numerically, so we define Q = hq/hks,
Er = h*k?/2m. By remembering the relation between the structure amplitude
and the structure factor

n

QP = 2a(@) (A5)
we can write «. in the form
VBm2k 2
A Sl A6
T T (4.6)

where
o o5 (-1)

{exp 5 (2 -1)] + 1}2'

To carry out this integral numerically we need (@) and 9(Q) values which were
read from Figs. 1 to 6.
For ! after carrying out the necessary integrations in the same way we

I= / T 4QQPa(Q*(Q) (AT)

obtain

Va2m2kin
of = T (A8)

4L / " 1QQ M (Q9(Q) (A.9)

o [ (-

During the evaluation of Iz integral a term involving d(a(®))/dQ = o'(Q)
also appears,

o [55 (1)

(oo e (& )] 1)

% / T 4QQ7 QY (Q) (A.10)
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but we can show that this term vanishes for the homogeneous case. To see this we
use the definition of structure factor

Q) = 13 3 exp [~ Q(R: — By) (A.11)
i

in Eq. (A.10) with R;, R; showing the atomic site positions in the sample
which are considered to be irregular. When derivative of a(Q) is taken, a factor
(R; — R;) comes in front of the exponential factor, afterward we take the config-
uration averages of both /., &/ and this makes the term in Eq. (A.10) vanish. In
Ref. [2] this term was present in the expression of I integral. However the inclu-
sion or the omission of this term does not change the results very much. In that
work structure factor curve given by others were used as input data. Whereas here
in this work we are able to draw the structure factor curves ourselves as described
in the text. In this work it has been possible to use more accurate input data and
accordingly we obtained better results.
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