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N ew calcula t i ons of resisti viti es of li qui d metals , N a, K , Rb, and allo ys,

N a{K , N a{Rb, K {Rb, were carried out by usin g a variant of t he K ub o for-
mula that explici tly contains the temp erature T . T he results come closer
to the experiment than the previous ones that use the Ziman formula of
resistivi ty .

PAC S numb ers: 72.15.C z

1. I n t rod uct io n

Zi m an form ula [1] of resistivi ty £ has been, and sti l l conti nues to be, the most
wi dely used expression in the calcul ati on of l iquid m etal and binary al loy resistivi -
ti es. Thi s expression conta ins a Ùnite integra l over the product Q 3 a ( Q ) j # ( Q ) j

2 and
the upp er l imi t is cut o˜ at Q = 2 k f . Here # (Q ) i s the pseudopotenti al due to a
sing le ion, a ( Q ) i s the structure f actor and is related to structure am pl itude S ( Q )

vi a j S ( Q ) j
2 = ( ¨ =V ) a ( Q ) and ¨ , V are volumes of the uni t cell and the system

respect ively. If we look at i t, we can see tha t i t does not conta in tem perature de-
pendence expl icitl y. As we kno w from the exp erimenta l curves of structure factor
a (Q ) , tem perature dependence comes only from thi s facto r. Theref ore, i f one wants
to obta in a tem perature behavi our of the resisti vi ty of any m etal , one should use
a structure factor a ( Q ) correspondi ng to each tem perature. Thi s is correct, but
i t is not adequate. The correct form ula thus shoul d invol ve the temperature T

cl earl y. T o achieve thi s purp ose, we have used an expression given by Eq. (1.1) in
an earl ier paper [2] whi ch is given as Eq. (3.1) in thi s work. Since the equati on
is in the form of a rati o, there is a tendency to ward balanci ng the errors com ing
from the neglect of higher order term s. Ho wever, in the Zi m an form ul a there is no
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such a structure, where the errors tend to add up to gether. At the sam e ti m e thi s
expression included the tem perature dependence thro ugh som e wei ght factors in
the integ ra ls inv olved in ˜ 0

r and ˜ 0 0

r (deta i led expl anati on wi ll be given later or see
R ef. [2]). T o obta in the tem perature behavi our of the resisti vi ty of the pure l iqui d
Na and R b, Ashcro ft and Lekner [3] have used the structure factors a ( Q ) whi ch
correspond to di ˜erent tem peratures obta ined by changing the packing fracti on ²

for di ˜erent pseudopotenti al # ( Q ) in the Zi man form ula. W e have also used the
structure factors obta ined from the sam e packing fracti on ² as thei rs in Eq. (3.1)
instead of the Zi m an form ul a. It is seen from Fi g. 11 tha t our results are much
cl oser to the exp erimenta l values tha n the other resul ts.

In the calcul ati on of the resisti vi ty of l iquid bi nary al loys as a functi on of
concentra ti on x , some physi cists have focused on the m odiÙcati on of the pseu-
dopotenti al so as to obta in sati sfactory results com pared to the exp eriment. For
thi s object Ashcro ft and Langreth [4] used the volum e dependent pseudopotenti al .
On the other hand, Gassert et al . [5] have shown tha t Fi bar{ Zi man form alism
does not al low the interpreta ti on of the experim ental resisti vi ty , i f hard- sphere
structure factors are used and they suggested tha t the pseudopotenti al (and the
Zi m an form ula) must probably be corrected by e˜ecti ve m asses.Correcti on [6, 7]
can be m ade by using

£ = [ h m Ê ( k f ) ij N k f j
2 ] 2 £ f ; (1 .1)

where £ f stands for the electri cal resistivi ty in the Zi man- t yp e theo ry. h m Ê ( k f ) i i s
the density- of-sta tes e˜ecti ve mass avera ged over the Fermi surface and N k f i s the
norm al izati on constant of the state k. The values of the calcul ated resistivi ty wi th
the Zi m an form ul a as a functi on of concentra ti on x generally are below the exper-
im enta l curves. Theref ore, by using the above equati on one achi eves a close curve
to the experim ental one, because the pre-multi pl ier h m Ê ( k f ) i i s bigger tha n uni ty ,
al tho ugh not very much. Thi s is seen from T able I I I given in Ref. [6]. Al tho ugh in
thi s work we did not use such a correcti on, we have obta ined a curve close to the
exp eriment. A deta iled argum ent wi l l be given in the next section.

Besides the m enti oned conven ti onal techni ques recentl y some m odern tech-
ni ques such as computer sim ulati on, di rect evaluatio n of conducti vi ty form ula by
ab ini ti o molecular dyna m ics sim ulati on have been developed [8{ 10]. Ho wever, al -
tho ugh i t has been possible to com e very close to the exp erim ent in some pro perty
calculati ons, these new techni ques have not reached yet to a sati sfacto ry level in
tra nsport property calcul ati ons. Our purp ose has been to show tha t the Kub o
form ula gives better results tha n the simpl e Zim an equati on of resisti vi ty under
the sam e assumpti ons.

In Secs. 2 and 3 we intro duce the m athem ati cal m odel of the problem and
form ulatio n of resisti vi ty respectively. In Sec. 4 the correla ti on functi ons ˜ 0

r and
˜ 00

r are calculated. Sections 5 and 6 conta in the calcul ati on of resisti vi ti es of l iqui d
pure m etals and al loys, and we discuss the resul ts in the Ùnal section.
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2. P seu dop oten t ial m odel f or l i qu id m et al s an d al l oys

In l iqui d metals the coupl ing between the carri ers and the rest part of many-
-parti cle system is given by the local pseudopotenti al U [11, 12]

U =
X

kk ;qq

S ( q )# ( q ) a +
k + q

a k ; (2 .1)

where S ( q) and # ( q ) are structure ampl itude and form facto r, a +
k + q

and a k are
creati on and anni hi lati on operato rs of carri ers wi th wa ve vecto rs k + q and k,
respect ively.

Equa ti on (2.1) can be extended to binary al loys [13] by repl acing the square
of the absolute value of S ( q )# ( q ) invol ved in i t by

q
x a 2 2 (q ) # 2

2 (q ) + 2 [ x ( 1 À x )] 1 = 2 a 1 2 ( q ) # 2 ( q ) # 1 ( q ) + (1 À x ) a 1 1 ( q ) # 2
1 ( q ) : (2 .2)

Here # i ( q ) are the intera cti ons of an electron wi th ions of species i ( i = 1 ; 2 )

im mersed in the sam e screening cloud of electro ns. x i s the concentra ti on of
species 2. a i j ( q ) are parti al structure factors describi ng a m ixture of random ly
di stri buted hard spheres wi th di ˜erent diam eters, whi ch is the hard-sphere m o-
m entum -space soluti ons of the Percus{ Yevi ck equati on for the radi al distri buti on
functi on in a cl assical Ûuid [14]. The a ( q ) deri ved in thi s way gave very good
agreem ent wi th the X- ray and neutro n-scatteri ng data around the Ùrst peak. A
deta i led inf orm ati on about it then wi l l be given in the text. W erner and Fresard
[15] in thei r work on tem perature dependence of tra nsport coe£ cients in l iqui d
and am orpho us meta ls have also used the sam e model. In order to faci l ita te di -
rect comparison of our resul ts wi th the Zi m an expression based calculati ons we
pref erred the hard-sphere m odel .

3 . F or mulat io n of r esist ivi t y f or l i qu id m et al s an d bin ar y al l oys

As we menti oned above, because the Zi m an expression is insu£ cient, we need
an al terna ti ve form ula conta ini ng al l these im porta nt e˜ects. For thi s we can rel y
on the wel l kno wn Kub o form ula. In thi s wo rk we used the f ollowing expression
[2] based on the Kub o form ula for the calculati on of the resistivi ty of pure l iqui d
m etals and al loys

£ =
6 V ( ˜ 0

r )2

e2 N 2 ˜ 00

r

; (3 .1)

where ˜ 0

r
and ˜ 00

r
are Ùrst and second deri vati ves wi th respect to frequency ! , of

rea l parts of force{ f orce correl ati on functi on [16] ˜ ( ! ) (f orm ula (2.18) in R ef. [16]).
Other sym bols have thei r custom ary m eaning. For a pure l iqui d m etal ˜ 0

r
and ˜ 00

r

are given by [2]

˜ 0

r
=

2 ¤

3

X

kk ;

ñh 2 q 2
j S ( q ) j

2 # 2 (q ) n 0

k
£ 0 ( Â E 0 ) ; (3 .2)
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˜ 00

r
= À

2 ¤

3

X

kk ;qq

ñh 3 q 2
j S ( q) j

2 # 2 ( q )n 0

k
£ 0 0(Â E 0 ) : (3 .2a)

If we use Eq. (2.2) in Eqs. (3 .2), (3 .2a), for ˜ 0

r and ˜ 00

r connected wi th binary al loys
we have

˜ 0

r =
2 ¤

3

X

kk ;qq

ñh
2

q 2
f x j S 2 2 ( q ) j

2 # 2
2 ( q )n 0

k £0 (Â E 0 )

+2 [ x (1 À x )] 1 = 2
j S 1 2 ( q) j

2 # 1 ( q) # 2 ( q) n 0

k £ 0 (Â E 0 )

+(1 À x ) j S 1 1 ( q ) j
2 # 2

1 ( q ) n 0

k £ 0 (Â E 0 ) g ; (3 .3)

˜ 00

r
= À

2 ¤

3

X

kk ;

ñh 3 q 2
f x j S 2 2 ( q ) j

2 # 2
2

(q ) n 0

k
£ 00 (Â E 0 )

+2 [ x (1 À x )] 1 = 2
j S 1 2 ( q) j

2 # 1 ( q) # 2 ( q) n 0

k £ 00 (Â E 0 )

+(1 À x ) j S 1 1 ( q ) j
2 # 2

1
( q ) n 0

k
£ 0 0(Â E 0) g : (3 .3a)

We shal l use these expressions in the resistivi ty form ula (3.1). The sums in the
form ulae (3.2), (3 .2a), (3 .3), and (3.3a) wi l l be carri ed out in the f ollowi ng section.

˜ 0

r
˜ 0 0

r

In order to calcul ate the resistivi ty of the pure l iqui d metals from Eq. (3.2),
we should do the sums in Eqs. (3.2), (3 .2a). These sums m ay be carri ed out by
turni ng them into integ rati ons in the usual way by using the relati ons

!

V

(2 ¤ ) 3
d 3 q ; !

V

(2 ¤ ) 3
d 3 k : (4 .1)

Duri ng the calcul ati on of the resisti vi ty , we assume tha t the energy spectra of the
considered system is parabol ic

E ( k ) =
ñh 2 k 2

2 m
: (4 .2)

If we denote the angle between the wectors and by ˚ and cal l cos ˚ = ¡ , the
energy di ˜erence Â E 0 becomes

Â E 0 =
ñh 2 k q

m
¡ +

ñh 2 q 2

2 m
(4 .3)

to obta in the condi ti on Â E 0 = 0 ; the vari able ¡ must be restri cted to negati ve
region À 1 ç ¡ ç 0 . Integ rati on is carri ed out in the order d¡ ! d (ñhq ) ! d (ñhk )

because wi th thi s order, duri ng the tra nsform ati on of del ta functi ons into simpl er
form s Jacobi ans never becom e zero, otherwi se nothi ng Ùxes thi s order. A deta i led
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inf orm ati on about the calcul ati on of ˜ 0

r
and ˜ 00

r
are given in App endix and the

resul ts are

˜ 0

r =
V Ùm 2 k 4

f ¨

2 4 ¤ 3 ñh
2

I 1 ; (4 .4)

I 1 =

Z
1

0

dQ Q 3 a ( Q ) # 2 ( Q )

exp
h

ÙE f

±
Q

2

4
À 1

² i

n
exp

h
ÙE f

±
Q

4
À 1 + 1

2
; (4 .4a)

˜ 00

r =
V Ù 2 m 2 k 4

f ¨

2 4 ¤ 3 ñh
I 2 ; (4 .5)

I 2 =
1

ÙE f

1

0

dQ Q a ( Q ) # 2 ( Q )
exp ÙE f

Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+
2

ÙE f

1

0

dQ Q 2 a ( Q ) # ( Q ) # 0 ( Q )
exp ÙE f

Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2
: (4 .5a)

On the sam e basis for the bi nary al loys ˜ 0

r
and ˜ 0 0

r
are given by

˜ 0

r =
V Ùm 2 k 4

f ¨

2 4 ¤ 3 ñh 2
I 1 ; (4 .6)

I 1 = x

1

0

dQ Q 3 a 2 ( Q ) # 2 ( Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+2 [ x (1 À x )] 1 = 2

1

0

dQ Q 3 a 1 2 (Q ) # 1 ( Q ) # 2 (Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+(1 À x )

1

0

dQ Q 3 a 1 ( Q ) # 2
1 ( Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2
; (4 .6a)

˜ 00

r =
V Ù 2 m 2 k 4

f ¨

2 4 ¤ 3 ñh
I 2 ; (4 .7)
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I 2 =
x

ÙE f

8
><

>:

Z
1

0

dQ Q a 2 ( Q ) # 2
2

( Q )
exp

h
ÙE f

±
Q

2

4
À 1

²i

n
exp

h
ÙE f

±
Q

4
À 1 + 1

2

+2

1

0

dQ Q 2 a 2 ( Q ) # 2 ( Q ) # 0

2 ( Q )
exp ÙE f

Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+
[ x (1 À x )] 1 = 2

ÙE f

1

0

dQ Q a 1 2 ( Q ) # 1 ( Q ) # 2 ( Q )
exp ÙE f

Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+

1

0

dQ Q 2 a 1 2 ( Q ) # 1 ( Q ) # 0

2
( Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+

1

0

dQ Q 2 a 1 2 ( Q ) # 0

1 ( Q ) # 2 ( Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+
(1 À x )

ÙE f

1

0

dQ Q a 1 ( Q ) # 2
1

(Q )
exp ÙE f

Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2

+

1

0

dQ Q 2 a 1 ( Q ) # 1 ( Q ) # 0

1
( Q )

exp ÙE f
Q

4
À 1

exp ÙE f
Q

4
À 1 + 1

2
: (4 .7a)

W e shal l use these expressions in the resisti vi ty form ula (3.1).

In thi s section we have appl ied the resistivi ty form ula (3.1) to the pure l iqui d
m etals Na , Rb, K in order to seethe tem perature behavi our of them . T oobta in thi s
obj ect, we should calcul ate the integra ls I 1 ; I 2 given by (4.4a) and (4.5a) and whi ch
are inv olved in ˜ 0

r
and ˜ 00

r
of the resistivi ty form ul a (3.1). Since integ ra ls I 1 , I 2 both

conta in a ( Q ) and # ( Q ) , the values of these integra ls depend on these sensiti vel y.
D uri ng the calcul ati on of resistivi ti es of three di ˜erent l iquid metals Na, K, Rb
we use the theo reti cal curve of a ( Q ) , whi ch is the soluti on of the Percus{ Yevick
equati on. The curve of a ( Q ) so obta ined depends only on one param eter, a general
packing fracti on ² , whi ch is related wi th hard-sphere diam eter ¥ by ² = (¤ =6 )n¥ 3 ,
and n i s the free carri er concentra ti on. The form factor # (Q ) of the pseudo-atom
is supposed to be weaker and much more rapidly converg ent tha n the Fouri er
tra nsform of the true ato m ic potenti al, but whi ch yi elds essential ly the sam e band
structure.
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In obta ini ng the resistivi ty of l iqui d Na , we have used the form factor # (Q ) of
the m odel potenti al of Hei ne and Aba renko v obta ined by Ani malu and Heine whose
data were ta bulated as tabl e 8.4 in Harri son' s book [12] and in order to see the Q

dependence clearly we drew Fi g. 1 usi ng these data , and for the structure factor
we have used a theo reti cal curve obta ined from the soluti on of the Percus{ Yevick
equati on as given in Fi g. 2. The latter conta ins som e curves correspondi ng to
di ˜erent packi ng fracti ons ² whi ch are ta ken from the Ashcro ft et al . work [3]. In
l i tera ture T dependence of ² is of ten determ ined thro ugh usi ng Ha segawa f orm ula
[17], however since we wa nted to compare our results wi th tho se of R ef. [3], we
have used thei r ² values. T emperature dependence of ² can also be seen f rom
Fi g. 3.6 of W aseda' s book [18]. For exam ple we read ² = 0 : 4 6 2 at T = 1 0 0 £ C
and ² = 0 : 4 1 4 at T = 3 0 0 £ C from his Ùgure for l iqui d Na. W e calcul ated the
resisti vi ti es as £ = 9 : 0 5 ñ ¨ cm and £ = 1 4 : 3 2 ñ ¨ cm correspondi ng to the above
² values respecti vely. Simil arly for l iqui d K we read ² = 0 : 4 6 2 at T = 6 5 £ C and
² = 0 : 4 2 3 at T = 1 9 5 £ C and calcul ated resisti vi ti es are £ = 1 2 : 4 3 ñ ¨ cm and
£ = 2 0 : 9 9 ñ ¨ cm respecti vely. These results do not di ˜er very much from the ones
in T able I and in T abl e I II whi ch shal l be presented shortl y.

Fig. 1. Form factor of the model potential of Heine and A baren ko v for sodium as

function of the momentum transf er q (draw ing based on the data from [12]).

Fig. 2. Structure factor a ( Q ) of a Ûuid of hard spheres according to the Percus{ Yevick

equation for sodium for di ˜erent packing fraction ² .
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T ABLE I

Temp erature dep endence of the resistivi ty of liquid sodium. T he
values of the resistivi ti es in ñ ¨ cm unit. T he third column is our
resistivi ty values and the fourth is the experiment. T he other
columns show the resistivi ties given in Ref . [3] for di˜erent form

factors.

T [
£ C] ² = ( ¤ = 6) n ¥

3
£ [ ñ ¨ cm] £ ex p £ c £ H A £HAA

100 0.456 9.51 9. 6 7.6 9 5

160 0.437 11.67 11.7 9.1 10.7 5. 9

200 0.424 12.99 13.1 10.3 12.1 6. 6

240 0.423 14.39 14.5 11.4 13.3 7. 2

300 0.396 16.48 16.6 13.6 15.4 8. 3

T ABLE I I
Temp erature dep endence of the resistivi ty of liquid Rb. T he val-
ues of the resistivi ti es in ñ cm unit. T he third column is our

resistivi ty values and the fourth is the experiment. T he other
columns show the resistivi ties given in Ref . [3] for di˜erent form
factors.

T C] ² ¤ = n¥ £ ñ cm] £ £ £ £

40 0.459 21.32 22 8.7 25.4 7. 5

160 0.412 32.38 33 13.9 36.1 11.7

240 0.395 39.69 40.5 16.8 41.1 13.8

360 0.365 51.22 52 22.8 50.9 18.1

T ABLE I I I

T emp erature dep endence of the resistivi ty
of liqui d potassium. T he values of the re-

sistivi ties in ñ cm unit.

T C ] ² ¤ = n¥ £ ñ cm] £

65 0.443 12.6 13

130 0.438 15.6 16.7

195 0.433 20 20.3

260 0.428 24 24.5

Al l the num erical results so obta ined for l iqui d Na are given in Tabl e I.
Values of and requi red for these calcul ati ons have been ta ken as

m J, respectivel y [2].



El ect r ical Resistivi t y of Li quid Met als . . . 393

In the sim i lar wa y, for Rb, K we use the values of # ( Q ) and a (Q ) given by
Fi g. 3, Fi g. 4, Fi g. 5 and Fi g. 6 respectivel y. Num erical results are listed in T abl eI I
and Table I I I.

Fig. 3. Form factor of the model potential of H eine and A barenko v for Rb as function

of the momentum transf er q (draw ing based on the data from [12]).

Fig. 4. Structure factor a ( Q ) of a Ûuid of hard spheres according to the Percus{Y evick

equation for Rb for di˜erent packing fraction ² .

Fig. 5. Form factor of the mo del potential of H eine and A barenko v for K as function

of the momentum transf er q (draw ing based on the data from [12]).

For R b, values of ¨ and E f requi red for these calcul ati ons have been ta ken
as 9 :5 4 È 1 0 À 2 9 m 3 ; 0 : 2 9 È 1 0 À 1 8 J, respecti vel y [7, 12].

In the calcul ati on of the resisti vi ty of the K we used the 7 9 : 5 È 1 0 À 3 0 m 3 ,
0 : 3 2 7 È 1 0 À 1 8 J for ¨ ; E f , respectively [7, 12].
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Fig. 6. Structure factor a ( Q ) of a Ûuid of hard spheres according to the Percus{Y evick

equation for K for di˜erent packing fraction ² .

For the l iqui d K, we have determ ined the param eter ² by Ùtti ng a ( Q ) to give
the correct height, a m ax , of the structure factor as described in Ref. [3].

If we look at T ables I, I I, I I I, i t is seen tha t for these l iquid m etals, Na ,
R b, K, each value of the resistivi ty corresp ondi ng to the di ˜erent tem peratures T

we obta ined is closer to the experim enta l one tha n the values obta ined by other
m eans. The detai led argum ent connected wi th these results wi l l be given in the
conclusi ons.

6. El ect r i cal resi st ivit ies of l i qu i d al loys

In obta ining the resistivi ty of l iqui d bi nary al loys, Na{ K, Na{ R b, K{ Rb, we
use Eqs. (4.6), (4.7) inv olved in the resisti vi ty form ul a (3.1) in pl ace of Eqs. (4.4),
(4 .5). Duri ng the evaluati on of these expressions we use again the sam e f orm
facto r # ( Q ) for each com ponent of the al loys, but parti al structure factor have
been considered. Som eof the parti al structure factors calcul ated, to be used in the
calculati on of the resisti vi ty in thi s paper, using the soluti on of the Percus{ Yevick
equati on and denoted by a i j ( Q ) are shown as exampl es in Fi g. 7.

The vari ables ² ; ˜ , and x of the parti al structure factor specify the system . ²

i s the to ta l packi ng fracti on for the m ixture. Al tho ugh the Percus{ Yevick equati on
shows no singul ari ti es for ² < 1 , the region beyond ² = 0 : 7 4 i s nonphysi cal , since
the Ûuid then has a packing density greater tha n tha t of the close-packed sol id. ˜

i s deÙned to be the hard- sphere rati o of the al loys. It ta kes the values between 0
and 1. x i s deÙned being the concentra ti on of larger spheres.

A plot of resisti vi ty for the Na { K alloys against x i s given in Fi g. 8. The
exp erimenta l data are ta ken from Hannepho f et al . [19].

In Fi gs. 9, 10 we show the experim ental and theo reti cal resistivi ty curves
whi ch are pl otted versus x for Na { Rb, K{ R b liqui d al loys.

W hen we look at Fi gs. 8, 9, 10 we concl ude tha t the concentra ti on behavi our
of the resisti vi ty of l iquid binary a lloys can be roughly described by No rdhei m-typ e
parabolas as exp ected, and they are very close to exp erimenta l curves. A deta i led
inf orm ati on wi l l be given in the concl usions.
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Fig. 7. T he partial structure factors presently calculated and used for (a) the N a{K

alloys at x K = 0 :2 and T = 100 £ C , (b) the Na{Rb alloys at x R b = 0: 2 and T = 100 £ C ,

(c) the K {Rb alloys at x Rb = 0: 2 and T C .

Fig. 8. Electrical resistivity calculated using Eq. (3. 1) for N a{K for ˜ : at C ,

denoted by ( | |). T he corresp ondin g experimental results are represented by (| |).
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Fig. 9. Electrical resistivity calculated using Eq. (3. 1) for N a{Rb for ˜ = 0: 9 at 100
£ C ,

denoted by (| ¯ |). C orresp onding experimental results are represented by (| |).

Fig. 10. Electrical resistivity calculated using Eq. (3.1) for K {Rb for ˜ = 0 : 7 at 6 5 £ C ,

denoted by (| ¯ |). C orresp onding experimental results are represented by (| |).

Our results for l iqui d Na are given in Tabl e I and Fi g. 11a. In obta ining
these we used the sam e pseudopotenti al and structure facto r as used in Ref. [3],
but the resistivi ty form ul a Eq. (3.1) we used was di ˜erent. As is seen from Fi g. 11a
our resisti vi ti es are m uch cl oser to the exp eriment tha n Ashcro ft and Lekner [3].
T able I I and Fi g. 11b show the results of our calculati ons for Rb, these values are
also closer to the experim ent tha n the results of Ref. [3]. T abl e I I I and Fi g. 11c
are about the resisti vi ti es of K, whi ch are cl ose to the exp eriment. There is a real
im pro vement in al l the results whi ch comes from the expl ici t dependence of the
resisti vi ty form ula Eq. (3.1) based on the Kub o form ul a.

The results for Na { K al loy are shown in Fi gs. 7a, 8. It is seen from Fi g. 8 tha t
our resisti vi ty values are closer to the experim ent tha n al l the resul ts of R efs. [4, 6]
and [7]. Besides Ref. [3] uses vo lume dependent pseudopotenti al and we use the
standard one whi ch is wi dely kno wn in the l i tera ture. Since the resisti vi ty depends
sensiti vel y on the choice of pseudopotenti al we avoided any changes on i t. On the
other hand, in R efs. [6] and [7] they use a correcti on factor to the Zi m an equati on,
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Fig. 11. T emp erature b ehaviour of the resistivi ty of the pure liquid metal (a) for N a,

(b) for Rb, (c) for K .

given by Eq. (1.1). By thi s they impro ved thei r results greatl y, but since our resul ts
are al ready close enough to the experim ent, we did not force ourselves to use such
a factor.

For Na{ Rb and K{ R b al loys we give the results in Fi gs. 7b, 9 and 7c, 10
respect ively. Ag ain resistivi ty versus concentra ti on curves are sati sfacto ri ly close
to the experim ent and sim i lar argum ents as said for the Na { K case can again be
repeated here.

There are recentl y developed m odern techni ques based on com puter sim -
ul ati on. We are aware of thi s fact, but we saw tha t these techni ques are, at the
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m oment, very far from being sati sfactory . For exam ple, i f we look at the Silvestrel l i
et al . work [9] on electri cal conducti vi ty calcul ati on in ab ini ti o simul atio ns of m et-
als appl icati on to l iquid sodium , thei r Fi g. 10 shows tha t calcul ated conducti vi ti es
do not agree wi th the exp eriment. Thi s fact is expressed in thei r words as \ we Ùnd
tha t, even usi ng a pro per k -point sam pl ing, our results are in agreem ent wi th the
exp erimenta l data f or temperature hi gher tha n 700 K only" . Thi s shows tha t thi s
ki nd of num erical wo rk, al tho ugh very attra cti ve, has not reached to sati sfacto ry
level even for the simpl est l iquid alkal i m etal sodi um .

Ano ther exampl e of a modern study is the Ki rchho ˜ et al . work [8] about
structure, dyna mics, and electroni c structure of l iqui d Ag { Se al loys investigated
by ab ini tio sim ulati on. Ca lculated conducti vi ty resul ts are given in thei r T able V
at di ˜erent materi al com positi ons x . In thei r words they say tha t \ as x increases,
conducti vi ty Ùrst increasesdram ati cal ly to ¤ 1 5 0 0 ¨ À 1 cm À 1 at x = 0 :4 2 and then
decreases slightl y to ¤ 1 2 5 0 ¨ À 1 cm À 1 at x = 0 : 6 5 . These values are 3{ 4 ti m es
hi gher tha n the experim enta l values". They dare to attri bute thi s discrepancy to
the Kub o form ula i tsel f by sayi ng \ we believe tha t these large di screpancies wi th
exp eriment ari se from the appro xi mati ons impl ici t in the Kub o{ Greenwood ap-
pro ach" . W e do not carry thei r vi ew, because the Kub o form ula is uni versal ly
accepted, so i t is better to question thei r techni que. W e can give m aybe other ex-
am ples of wo rk tha t are simi lar to the above m enti oned ones, for exam pleKa schner
et al . [10].

As a resul t we can say tha t in thi s wo rk we obta ined better resul ts wi tho ut
usi ng the Zim an form ula.

Ap p en dix

In thi s app endix Ùrst we evaluate ˜ 0

r from form ula (3.2)

˜ 0

r =
2 ¤

3 ñh
3

X

kk

n 0

k

V

4 ¤ 2

Z
1

0

d (ñhq )ñh 4 q 4
j S ( q ) j

2
# 2 ( q )

È

Z
0

À 1

d¡ £ 0

˚
ñh 2 k q

m
¡ +

ñh 2 q 2

2 m

Ç

; (A. 1)

where d¢ integ rati on has been carri ed out. If we use the relati on

£ 0 [ f (x )] =
1

j f 0 ( x 0 ) j f 0 ( x 0 )

ç

£ 0 ( x À x 0 ) +
f 00 ( x 0 )

f 0 ( x 0 )
£ ( x À x 0 ) ; (A. 2)

wi th x 0 being the root of the f ( x 0 ) = 0 , we have

£ 0
ñh 2 k q

m
¡ +

ñh 2 q 2

2 m
=

m 2

ñh 2 k 2 ñh 2 q2
£ 0 ¡ +

ñhq

2 ñh k
: (A. 3)

The root ¡ 0 i s given by ¡ 0 = À ñhq =2 ñh k . If we substi tute (A. 3) into (A. 1) and do
necessary integ rati ons
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˜ 0
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: (A. 4)

No contri buti on com es from the Ùrst del ta functi on inside the square bracket
to ˜ 0

r , but when we calcul ate ˜ 0 0

r later on, the correspondi ng term then wi l l be
ñhq £ 0 (ñhq =2 ñhk ) and there wi l l be contri buti on owi ng to the relati on x £0 ( x ) = À £( x ) .
Af ter turni ng the ñhk sum into integ rati on, the integ ra l over ñhk should be made
di mensionless in order to carry out i t num erical ly, so we deÙne Q = ñhq = ñhk ,
E = ñh

2
k =2 m . By rem embering the rela ti on between the structure am pl i tude

and the structure factor

j S (Q ) j
2 =

¨

V
a ( Q ) (A. 5)

we can wri te ˜ 0

r
in the form

˜ 0

r =
V Ùm 2 k ¨

2 4 ¤ 3 ñh 2
I 1 ; (A. 6)

where

I 1 =

1

0

dQ Q 3 a ( Q ) # 2 ( Q )

exp ÙE Q

4
À 1

exp ÙE Q
4

À 1 + 1
2

: (A. 7)

T o carry out thi s integ ra l num eri cal ly we need a ( Q ) and # ( Q ) values whi ch were
read from Fi gs. 1 to 6.

For ˜ 00

r
after carryi ng out the necessary integ rati ons in the same way we

obta in

˜ 00

r
=

V Ù 2 m 2 k ¨

2 4 ¤ 3 ñh
I 2 ; (A. 8)

where

I 2 =
1
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: (A. 9)

D uri ng the evaluati on of I 2 integ ra l a term inv olving d ( a ( Q )) =dQ = a 0 ( Q )

also appears,

1

ÙE

1

0

dQ Q 2 a 0( Q ) # 2 ( Q )

exp ÙE Q

4
À 1

exp ÙE Q
4

À 1 + 1
2

; (A. 10)
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but we can show tha t thi s term vanishesf or the hom ogeneous case. T o see thi s we
use the deÙniti on of structure factor

a (Q ) =
1

N 2

X

i ; j

exp [ À j Q ( R i À R j )] (A. 11)

in Eq. (A. 10) wi th R i ; R j showi ng the ato mic site positi ons in the sampl e
whi ch are considered to be i rregular. W hen deri vati ve of a ( Q ) i s ta ken, a factor
( R i À R j ) comes in front of the exponenti al facto r, af terwa rd we ta ke the conÙg-
ura ti on averages of both ˜ 0

r
; ˜ 00

r
and thi s m akes the term in Eq. (A. 10) vani sh. In

R ef. [2] thi s term was present in the expression of I 2 integ ra l . However the incl u-
sion or the om ission of thi s term does not change the results very much. In tha t
wo rk structure factor curve given by others were used as input data . W hereas here
in thi s work we are able to dra w the structure factor curves oursel ves as described
in the text. In thi s work i t has been possible to use m ore accurate input data and
accordi ng ly we obta ined better results.
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