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The use of X-ray diffraction line profile analysis for the study of nanocrys-
talline powders is described. The fundamentals of the theory are presented in
terms of crystallite/domain size, size distribution, lattice distortion, disloca-
tion density and stacking faults. Line profile parameters and the methods of
pattern fitting introduced to overcome the diffraction-line overlap problem
are described. The approaches based of the integral breadth of the measured
line profiles and the Fourier method are discussed. In addition, simplified ap-
proaches are also commented. Representative examples are selected to illus-
trate various cases of microstructure, such as nanomaterials with strain-free
spherical nanocrystallites, strain-free crystallites with anisotropic crystallite
shape, anisotropic crystallites with microstrains and spherical crystallites
with dislocation densities and crystallite size distributions.

PACS numbers: 61.10.Dp, 61.10.Nz, 61.46.4w, 61.72.Dd, 61.72.Lk, 61.72.Mm

1. Introduction

The investigation of size dependent properties of nanoscale materials has
received much interest in the recent years (see, for instance, Refs. [1-3]). Among
the techniques used to characterize nanomaterials the powder diffraction method
provides information on the size of crystallites (domains over which diffraction
is coherent) and structure mistakes. The method, introduced long ago with the
Scherrer equation, has progressed considerably with pattern fitting approaches
(see, for instance, Refs. [4, 5]). In particular, the interpretation of anisotropic line
broadening in terms of crystallite shape [6] or dislocation density [7] has been
described. Recent trends deal with pattern modelling using physical-parameters
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based models [8]. The traditional approaches of line broadening analysis can usu-
ally be applied for crystallite sizes in the approximate range 3—100 nm, though the
higher limit can be extended by increasing the resolution of the instruments, e.g.
with ultrahigh resolution diffractometers available with synchrotron X-rays. Below
~ 3 nm the diffraction lines broaden considerably and, then, pattern modelling
approaches are useful. In this last range of sizes the study of supported catalysts
by diffraction is also of particular interest [9]. Most of modern advances have been
considered at length in the recent book Defect and Microstructure Analysis by
Diffraction [10].

Microstructural effects contributing to diffraction line broadening include the
small size of crystallites, size distributions, stacking faults, and lattice distortions.
The size effect is related to an apparent size of the crystallites, which includes their
true size, and a possible fictitious size on certain Akl planes if stacking faults are
present. Lattice distortion corresponds to small changes in dpg; spacings. These
changes, generally expressed by the relative deformation Ad/d, can be due to dis-
locations, punctual defects in nonstoichiometric materials, d-spacing fluctuations
in layered materials, or chemical composition gradients. Line broadening due to
lattice distortion is generally known as the strain effect. The paper is organised
as follows. Section 2 deals with the characteristics of diffraction lines and modern
fitting techniques. In the subsequent sections the basic theory of diffraction by
nanocrystallites (Sec. 3) and simplified analyses (Sec. 4) are considered. Finally,
representative applications to powder nanomaterials are reported in Sec. 5.

2. Diffraction line profiles and pattern fitting

Observed diffraction line profiles h(x) are the convolution of physical pro-
files f(x), due to the sample microstructure, and instrumental profiles g(z), in-
cluding wavelength dispersion, i.e. h(x) = f(#) * g(x). Deconvolution methods
(see Ref. [10]) must be applied to correct observed profiles h(z) from the in-
strumental contribution. Among them, the method based on the multiplicative
property of the related Fourier transforms, H(t) = F(¢)G (1), is often used to ob-
tain f(z) and its Fourier coefficients. The f(x) profiles result themselves from
the convolution of components arising from the microstructure contributions, e.g.
f(x) = fS(x)* fP(x)* f¥(x), where f5(x), fP(x), f¥(x) stand for size, distortion,
and stacking faults effects, respectively.

Line profiles are characterized by a position parameter, e.g. the peak position
defined by the angle 26y where the profile intensity is maximum (Ip) and a measure
of intensity dispersion or line broadening, such as the full width at half maximum
FWHM and the integral breadth g [= [ 1(26)d(26)/Io] which has considerable
theoretical advantages. A useful parameter is the line shape expressed as ¢ =
FWHDM/j. The breadths are measured experimentally in degrees 20, but for a
physical interpretation it is preferable to use reciprocal units (nm~1!), i.e. 8* =
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(fag cos @)/ A. The elimination of the instrumental contribution from Sj requires
assumptions about line profile shapes, e.g. for Cauchy shapes 3, = §; + 3, and
for Gauss shapes 37 = 6? + 65 If the profiles are adequately described by Voigt
functions (see below) a precise evaluation of §; can be carried out. Within the
context of the Fourier analysis, the f(x) is given by a Fourier series

+ oo
flx) = Z [Ap cos(2mnz) + By, sin(27na)], (1)
— 00
where x 1s the reciprocal space variable and n — the harmonic number. In practice,
= takes the form (s — sp)/As, where s = 2sinf/X, sp = 2sinfy/A = 1/dnp1,
As = (2sinfly — 2sinfy)/ A, (61, 62) is the angular range over which the profile is
defined, 6y and d are the angle and spacing of the Bragg reflection hkl.

Pattern modelling techniques have been introduced to overcome the prob-
lem of line overlap which results from the rotational projection of the nodes of
the reciprocal lattice onto one-dimensional pattern. Two different approaches are
currently applied, the pattern decomposition method, for which no structural in-
formation is required, and the Rietveld method which includes the refinement of
atomic coordinates. The procedure consists of fitting, usually with a least squares
refinement, a calculated model to the whole observed diffraction pattern. These
techniques can be used to restore the individual line profiles, provided that the
degree of line overlap is not too severe. The calculated intensity y(z;) at point
z; 1s expressed as a function of the integrated intensity I of reflection & and a
normalised analytical function @ is used to model individual line profiles

Year(2;) = Z LiP(x; — z) + b(2y), (2)

where b(x;) is the intensity of the background and the sum is over all reflections
contributing to the intensity at z;. The most commonly used line shape functions
@ are derived from the Gauss (G) and the Cauchy (C') functions (for a detailed
description, see Appendix 1 in Ref. [4]). The pseudo-Voigt [nC' + (1 — n)G] is the
sum of G and C' components, in a proportion defined by n (n = 1 for C' and 0
for (). The Pearson VII function is (C')™, where the exponent m is the line shape
parameter (m = 1 for C' and m = oo for ). The Voigt is a convolution of C
and G components whose limits of application are defined by the shape parameter
@, 1.e. 0.6366 for C' and 0.9394 for (. Fitting techniques and line broadening
analysis (Fourier and integral breadth methods) are often combined to overcome
line overlap problems [11, 12].

In the Rietveld method [; is expressed as a function of the square of the
structure-factor modulus | F|? and the atomic coordinates are adjusted to get the
best fit to observed data. The angular dependence of line widths is described by a
quadratic form, i.e. FWHM? = Utan?0 + V tanf + W, where U, V and W are

refined parameters. If the diffraction lines are physically broadened, such angular
dependence 1s valid for isotropic microstructual properties. If a pseudo-Voigt func-
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tion is used, the Gauss components F'W H M follow the above equation, while
the Cauchy components can be written as FWHM¢e = X tanf + Y/ cosf [13]. Tt
contains explicitly both a term with cos™! @ and a one with a tan @ dependence,
which are related to the size and distortion effects, respectively. More sophisti-
cated phenomenological models have been reported for anisotropic cases [14] and
the Rietveld method has also been discussed in microstructural terms using inte-
gral breadth [15] and Fourier approaches [16].

3. Diffraction by nanoscale and imperfect crystallites

The basic expression for a diffraction line profile resulting from small and
distorted crystallites is given by [17, 18]

f(s) = /V(t)y(t) exp(—2mist)dt, (3)

where V(1) is conveniently represented as the volume common to the crystallite
and its double, displaced a distance ¢ in the direction of the diffraction vector, and
y(t) is the average value of the product F/F* of complex structure-factors of pairs
of cells separated by a distance ¢ in the diffraction vector direction. V(#)y(t) is
then the Fourier transform of f(s).

3.1. Suze effect

For negligible distortion, y(¢) is a constant, the reciprocal of the initial slope
of the volume function V(¢) is the Fourier apparent size ey [= =V (0)/V’(¢)¢=0] of
the crystallite in the direction of the diffraction vector [19]. This is an area-weighted
mean apparent size. The second derivative V/(¢) is proportional to the crystallite
thickness distribution measured in the direction of the diffraction vector. There is
a relation between V(¢) and the integral breadth 55, ie. %% = V(0)/ [V (¢)dt,
from which the integral-breadth apparent size c5 (= 1/3%%) is derived. This is
a volume-weighted average size. In order to make allowance for the variation of
thickness within a crystallite in the direction of the diffraction vector some regular
morphology must be assumed [20]. The simple case is the sphere for which the
equivalent area-weighted and volume-weighted mean diameters are (Da) = 3ep/2
and (Dv) = 4e5/3, respectively. A useful model for anisotropic crystallite shapes,
used in the examples discussed in the present overview, is the cylinder which can
be conveniently applied from acicular to disk crystallite shapes [21].

3.2. Dustortion effect

The interpretation of y(¢) is not so straightforward. In the Fourier approach
the mean strain e, is defined as AL/L, where L (= ndpj; or, in practice, n’'/As
according to the period d* or As over which the Fourier coefficients are calculated
[22]) is the length between pairs of undistorted cells separated by n cells and AL
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is the distance change due to distortion. In the Warren—Averbach—Bertaut [22],
the complex coefficients Cy, (1) [= A, (1) + 1By ({)] for a reflection [ are expressed
by the product of a size real coefficient A3 independent of the order I, and a
distortion order-dependent complex coefficient CD (1) [= AP (1) +1BY(1)]. The two
coefficients can be separated if, at least, two orders are available. This can be
carried out from the plots In4,,(I) versus {2, which result from series expansions

of cosine and logarithm terms
In A, (1) = In A3 — 272 1%n?(e2). (4)

The procedure is valid for small values of { and n (or L). Tt is exact if Gaussian
distributions of e, occur. In Eq. (4), e, is the root-mean-square (r.m.s.) strain.
After separation, the size coefficients A3 can be interpreted as explained in Sec. 3.1,
though for numerical calculations Fourier transforms are substituted by the Fourier
series.

The integral breadth of f(x) provides another estimation of microstrain. An
apparent strain parameter has been introduced, i.e. ng = 28°* /d* = gD cotand,
where 3P* is the distortion integral breadth [23, 24]. Two simple strain models for
which the apparent strain is related to the true distortion have been discussed. In
the first model, the true strain é (= Ad/d = ng/4) is based on the assumption
that the Bragg equation is valid over the angular range corresponding to d + Ad.
In the second model, the strain is defined by the r.m.s. strain ¢ = <62>1/2 =

n/[2(2m)'/?] = 115 /5.
3.8. Anusotropic microdistortion and dislocations

Anisotropic microdistortions have been interpreted with the dislocation
model based on the r.m.s. strain of dislocated crystals [7]. In this model of {e2),
the contribution to strain-induced line broadening depends on the relative ori-
entations of the line and Burgers vectors of the dislocations and the diffraction
vector, similar to the contrast effect of dislocations in transmission electron mi-
croscopy. This anisotropic effect is taken into account with contrast factors C,
which have been calculated on the basis of the crystallography of dislocations
and the elastic constants for cubic [25] and hexagonal [26] materials. Accord-
ing to Krivoglaz [27] and Wilkens [28], for small values of L, the microdistor-
tion term (e2) in the Warren—Averbach approach (Eq. (4)) is expressed as a
function of dislocation parameters, namely the dislocation density (p), the mod-
ulus of the Burgers vector (b) and the effective outer cut-off radius of dislo-
cations (R.), i.e. {e2) = (pCb?/47)In(R./L). For cubic materials, the average
dislocation factors can be written as C' = Choo(l — ¢H?) [25], where Choo is
the average dislocation contrast factor for the h00 reflections, ¢ is a parame-
ter depending on the elastic constants and the nature of the dislocations and
H? = (h%k? + h212 + k212)/(h? + k% + [2)%. The values of Cpgo can be obtained

from tables [29]. In particular, Croo and ¢ have been estimated for dislocations
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with the Burgers vectors a/2(110) and a/2(111). The density of dislocations is
then calculated from the modified Warren—Averbach method, after insertion in
Eq. (4) of the contrast factor

In A(L) = In AT(L) = (xb%/2)pL* In(R./L)(d**C) 4+ O(d**C"?), (5)
where O stands for higher order terms in d*2C’. Analyses carried out over all reflec-
tions can be carried out with the program MWP-fit [30]. The Fourier transforms
of each profile are fitted simultaneously using a linear least-squares algorithm. The
interpretation is extended to the crystallite size distributions assuming lognormal
functions, which have been proved to occur in a loose powder of CeO5 [31].

3.4. Stacking faults

The effect of stacking faults on line broadening has been discussed by Guinier
[17], Wilson [18] and Warren [22]. The diffracting domains are limited by the faults.
The integral breadth is inversely proportional to the mean distance between hkl
planes concerned by the mistakes. This effect is similar to size broadening, though
line broadening is selective, i.e. it depends on hkl. Various types of faults can
be considered, e.g. deformation faults, growth faults, and twin faults. Stacking
faults have three main effects on line profile: the apparent size is modified, the
deformation faults introduce a shift of certain reflection in cubic symmetry and
asymmetry is observed in case of twinning. The case of hexagonal symmetry is
simpler for faults in planes perpendicular to the ¢ axis. The hexagonal close packed
sequence ABA. .. is replaced by the plane series ABABAB; CBCBCB. .. where a
fault is intercalated. Some reflections are symmetrically broadened without shift
of their position. As a consequence, the integral breadths, expressed as a function
of the stacking fault probability o and the angle ¢, between the diffraction vector
and ¢ axis, follow particular conditions on Akl forming three groups of reflections,
i.e. h—k =3n and hk0, 8" = 0; h—k = 3n£1, 8" = acos ¢, /2c for [ even and
B = 3acos ¢, /2¢ for [ odd [18, 32].

4. Simplified analysis of the microstructure

A simplified analysis of diffraction line broadening was introduced through
the so-called Williamson—Hall plots [33] in which B (or FWHM}‘) is plotted for
all hkl reflections as a function of d* (= 2sin#/X). This simple representation
assumed that all profiles have a Cauchy shape. The method should not be used
quantitatively, but it gives a useful overview of the microstructural effects at the
origin of line broadening and, generally, it suggests the appropriate subsequent
analysis to carry out. In practice, several models are available for simplified analy-
sis, depending on the profile shape assumptions for the size and strain line profiles,
namely Cauchy—Cauchy 8} = 651 + 2ed*, Gauss—Gauss 6;2 = (651)2 +4e2d*? and
Cauchy—-Gauss 6;2 = (Egl)ﬁ; + 4e%d*?, where ¢ is the real component of strain.
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The interpretation of e depends on the strain model selected, as discussed in
Sec. 3.2. From the Cauchy—Gauss model, which i1s an approximation of the Voigt

2 can be used for

function, an “average size-strain” plot (6;/d*)2 Versus B;/(d*)
the evaluation of strain (intercept) and size (slope) for isotropic cases [20]. In this
interpretation the Cauchy component B;C is attributed to size and the Gauss
component B;G to strain.

For anisotropic microdistortion a modified Williamson—Hall plot, based on
the breadths Bj (6; or FW HM*), taking into account the contrast factors due

to dislocations has been introduced [7, 34]:

B} = (1/2) + (xM202/2)p /2@ T 1?2 4 (T, (6)

where ¢ (g3 or epwmam/0.9) is the mean apparent size and M — a constant
dependent on the effective outer cut-off radius of dislocations (see Sec. 3.3).

5. Applications and discussion

4.1. Isotropic nanocrystallites: CeOs

Several examples of CeOs powders with isotropic diffraction line broaden-
ing have been reported. They were obtained from soft thermal decomposition of
inorganic precursors [35, 36] or from gas condensation [37]. In the case of CeOs
obtained thermally in the range 600—850°C from hydrated ceria precipitated from
a sulfate solution [36], the Williamson—Hall plots have a zero slope, whatever
the sample preparation temperature, which is an indication of strain-free spher-
ical crystallites on average with volume-weighted diameters (Dy) in the range
26.3(8)—116.7(8.7) nm. Fourier transforms are then superposed, within the exper-
imental error, for 15 hkl reflections, with area-weighted diameters (Dy) in the
range 19.5(1.2)-92.7(13.1) nm. The difference in the two diameter values is due
to a crystallite-size distribution, as shown by the ratio of apparent sizes (c3)/{cr)
in the range 1.52-1.42, while for homodispersed nanocrystallites the ideal ratio is

1.125.
5.2. Anisotropic strain-free crystallites: ex-hydrozynitrate ZnQO

The Willliamson—Hall plot (Fig. 1a) of a sample obtained at 210°C from the
decomposition of the hydroxynitrate [6], shows that B} 1s the same, within the
experimental error, for different orders of A00, A0k and 00!. This is an indication
about strain-free crystallites. The intercept for 00! reflections is smaller than that
observed for hkQ reflections, indicating a prismatic crystallite shape with a diame-
ter smaller than the height. An average circular cross-section is deduced from the
similar 6; values obtained from £00 and hkO lines. These features are supported
by the behaviour of 6; for 10! lines, for which the angle ¢, between the diffraction
vector and base plane increases from 0 to 7/2. From a least squares analysis the
crystallite shape model shown in Fig. 1b has been obtained. It is characterized by
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a height of 27(6) nm and a diameter of 18(1) nm. The observed apparent sizes ¢
are indicated by arrows for various crystallographic directions. This is an example

of a three-dimensional representation of crystallite shape.
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Fig. 1. Microstructure analysis of nanocrystalline ZnO. (a) Williamson—Hall plot
for strain-free ex-hydroxynitrate ZnO; (b) section of the cylindrical model for
ex-hydroxynitrate ZnO, obtained from least squares fit, showing the observed appar-
ent sizes €g shown by the length of the arrows in various hkl directions, the broken
line is the loci of the calculated apparent sizes (from Ref. [6]); (c) Williamson—Hall plot
for ex-oxalate strain-free ZnO displaying stacking faults effects visible for two reflec-
tion groups (A, o), according to the hkl conditions listed in Sec. 3.4 (from Ref. [32]);
(d) Williamson—Hall plot for ex-acetate ZnO, showing the presence of size, strain and

stacking faults (from Ref. [40]).

5.8. Anusotropic crystallites with stacking faults: ex-ozalate ZnQO

The Williamson—Hall of ZnO obtained from an oxalate at 400°C is shown
in Fig. 1c [38]. The scatter of integral breadths is interpreted by three groups of
reflections according to hkl as reported in Sec. 3.4. This is a typical example of
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stacking faults in a nanocrystalline hexagonal material. For the group of reflections
(hkO, h — k = 3n), unaffected by the faults, the scatter of the breadths is almost
negligible and the corresponding intercept suggests close sizes in the directions per-
pendicular to (R00) and (00!). The least squares analysis, based on the cylindrical
model, gave a diameter of 40(1) nm and a height of 33.6(1.2) nm. The calculated
mean fault probability a = 0.008 was derived from the analysis of the two other
reflection groups, i.e. the mean distance between faults is 31.6 nm or there is, on
average, one fault per crystallite. The microstructure changes during initial crystal-
lite growth of four nanocrystalline ZnO samples obtained from the hydroxynitrate-,
oxalate-; acetate- and hydroxycarbonate-precursors have been thoroughly studied
from line broadening analysis [38-40]. An example of Williamson—Hall plot for
ex-acetate ZnO is shown in Fig. 1d. It is representative of combined size, strain,
and stacking fault effects. From this study concepts on the microstructure depen-
dence with the chemical nature of the precursors were derived.

5.4. Anisotropic crystallites with distortion: Ni(OH )

The Williamson—Hall plot of a sample of hexagonal Ni(OH); [41], based on
24 reflections, is shown in Fig. 2a. For 00/, h0h, and h00 reflections positive slopes
are observed, indicating the presence of microdistortions. The non-zero intercept
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Fig. 2. Microstructure analysis of nanocrystalline Ni(OH): (from Ref. [41]).
(a) Williamson—Hall plot displaying the anisotropy in crystallite shape and the presence
of lattice distortion; (b) cosine Fourier coefficients for 00! diffraction lines, demonstrating

the order dependence of line broadening.

for the three families indicates the presence of a size effect. Moreover, the sequence
3*(h00, hk0) < #*(h0h) < *(00!) can be interpreted from disk-shaped crystal-
lites with the ¢ axis collinear to that of the disk. The integral breadths of groups
of reflections (101, 11{), (20!, 21{) and 30! follow a behaviour in accordance with
the model. However, the presence of strains makes a bit more complicated the
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quantitative analysis from the integral breadth approach. The Fourier transforms
were calculated for different orders (001/003/005, 100/200, and 101/202) in order
to separate size and strain effects. They are shown in Fig. 2b for the reflections
001/003/005. From the initial slopes, the apparent sizes 18.4 nm, 54.5 nm, and
26.2 nm were calculated in the directions perpendicular to (001), (100), and (101),
respectively. The average parameters (D) = 69.4 nm and (H) = 18.4 nm were
found. The apparent size (23.8 nm) calculated from these values in the direction
perpendicular to (101) was in good accordance with the observed apparent size.

5.5, Isotropic crystallites with dislocations: ez-ammonium-nitrate CeQOs

Williamson—Hall plots of samples of CeOs obtained thermally in the range
600—850°C, from hydrated ceria precipitated from an ammonia solution [36], re-
vealed a significant anisotropic line broadening with an average positive slope. This
is an interesting case of anisotropic distortion. This anisotropy can be seen, for ex-
ample, on the breadth of line 111 greater than that of 200, which corresponds to
an elastic anisotropy, A, = 2e44/(c11 — ¢12), smaller than one. It has been treated
and rationalized in terms of the dislocation model described in Sec. 3.3 [34]. The
final results are shown in Fig. 3, i.e. the changes with temperature in dislocation
densities and mean values of the size distribution functions (Fig. 3a) and the mod-
ifications of the size distribution functions with temperature (Fig. 3b). It is seen
that the size distributions shift to larger values with decreasing densities as the
higher temperature is raised. Such interpretation of anisotropic line broadening
has been recently applied in our group for studying ball-milled nanocrystalline
fluorides MFy (M = Sr, Ca, Ba, Cd) with the fluorite-type crystal structure from
which the deformation behaviour of the materials were carefully pointed out from
diffraction line broadening analysis [42].
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Fig. 3. Microstructure characteristics of nanocrystalline CeO, prepared at different
temperatures (from Ref. [34]). (a) Dislocation density p and mean values m of the size

distribution functions; (b) size distribution functions of CeOs.
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6. Conclusions

To conclude, nanocrystalline materials can be characterized from diffrac-
tion line profile analysis in terms of crystallite size, distribution, dislocations, and
stacking faults. The presence of more than one effect can make the study more
complicated and limited. However, examples have been reported, in which the
microstructural parameters were nicely correlated to chemical or physical prop-
erties, such as for example the enhancement of electrochemical properties from
mechanically-activated nanocrystalline nickel hydroxide nitrate [43]. Diffraction
methods for the study of nanocrystalline materials are still in progress and new
developments can be expected in the near future of the use of whole pattern mod-
elling based on the physical parameter approach.
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