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The iterative solutions of the previously derived operator equation which
defines an open-ended formalism for the reduction of the 4-component Dirac
Hamiltonian to 2-component “electronic” operators of arbitrarily high ac-
curacy, are discussed. It is shown that by departing from the approach
based solely on the operator algebra one can define the initial iterative
solution which leads to the 2-component Douglas—Kroll Hamiltonian. The
present derivation reveals the origin of the success of methods based on
the Douglas—Kroll Hamiltonian. It also shows that among relatively simple
2-component Hamiltonians, which are exact through the fourth power of the
fine structure constant, the Douglas—Kroll operator is the most complete one.
Also a computationally convenient and highly compact formula for matrix
elements of the Douglas—Kroll Hamiltonian is obtained as a by-product of
this investigation.

PACS numbers: 31.15.—p, 31.30.Jv

1. Introduction

The attempts to reduce the 4-component Dirac Hamiltonian [1] to two mu-
tually independent 2-component operators go back to the early days of quan-
tum mechanics. The formal solution of this problem has been given by Foldy and
Wouthuysen (FW) [2] and found to lead to essentially singular operators, making
the resulting two-component Hamiltonians useless in applications going beyond
the order of a? (v = 1/c, where ¢ is the velocity of light, ¢ &~ 137.036 a.u. of
velocity). This problem appears to have been resolved in the method proposed
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by Douglas and Kroll (DK) [3]. Owing to its implementation by Hess et al. [4-6]
the 2-component DK Hamiltonian has been made into one of the most successful
tools of the relativistic quantum chemistry. A competitive 2-component technique,
which explicitly avoids the presence of singular operators, has been proposed some
years ago by Snijders et al. [7-9].

Recently, Barysz, Sadlej, and Snijders (BSS) [10] have investigated an al-
ternative approach to the block-diagonalization problem. This approach has been
formulated in terms of the operator equation, whose solutions determine the uni-
tary transformation to be performed on the Dirac Hamiltonian. Solutions of this
equation can be generated iteratively and lead to a family of 2-component Hamil-
tonians which can be made exact through any desired order in 2. The resulting
2-component BSS Hamiltonians which are exzact through the given k-th order in
a? differ by some contaminants of all higher orders in o. The performance of the
given a?®-order BSS Hamiltonian hsy significantly depends on the included por-
tion of these higher order terms [11]. Some general aspects of the relation between
the DK and BSS Hamiltonians have been analysed earlier [10]. It has been shown
that through terms of the order of a? the hy BSS Hamiltonian is fully equivalent
to that of the DK method. This finding has been used to prove that in both cases
the one-electron energy eigenvalues are exact through the order of o [10].

The iterative solution of the operator equation underlying the generation of
the 2-component Hamiltonians of arbitrarily high accuracy with respect to o? is
a very attractive analytic tool which can be used to gain a deeper insight into the
structure and contents of different methods. The purpose of this paper is to further
exploit this tool in the investigation of relations between h4 and DK Hamiltonians.
It will be shown that with a certain particular choice of the solution of the iterative
scheme leading to BSS Hamiltonians one obtains the two-component DK Hamilto-
nian. This analysis reveals the secret of the exceptionally good performance of the
DK method and shows how several higher order terms are summed up to infinity.
In terms of the present analysis the DK method reappears as possibly the most
powerful scheme of the leading order of a* [10].

A brief summary of the BSS approach will be presented in Sec. 2. The
iterative solutions of the operator equation for the determination of the block-
-diagonalizing unitary transformation will be discussed in Sec. 3. It will be shown
that one of these solutions leads to a compact two-component Hamiltonian which
is fully equivalent to the usual DK operator [3, 5]. The proof of this equivalence
is given in Appendix. The extension of the a*-order theory to higher orders in a?
and related issues will be discussed in Sec. 4.

2. A survey of the derivation of the BSS Hamiltonians

The purpose of this survey is mainly to establish the notation used in the
present paper. A more detailed derivation of different equations and their dis-
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cussion can be found in Ref. [10]. Let Hy be the Dirac-type Hamiltonian for an
electron moving in the external potential V. In the usual notation [1, 10, 12]

V cop
cop V —2¢%)°

(1)

The atomic units are used throughout this paper and ¢ denotes the velocity of

Hy = cap+ Bc? +(V — ) = (

light. Its inverse « is the usual ordering parameter in the perturbation treatment
of relativistic effects [1, 2, 13, 14]. Alternatively, one can use the expansion in terms
of the coupling between the electron and external fields [3].

The initial step in the development of possibly non-singular two-component
theories is the transformation of Hy by the exact free-particle Foldy—Wouthuysen
(fpFW) unitary transformation Uy [2, 3, 10]. The resulting transformed Hamilto-
nian Hq = UJHOUO

T, + AV + a?BV B)A aAlV, B]A
Hy = -2 2 ;o (2)
aA[B,V]A —2a7? -1, 4+ A(V +a’BVB)A
where
ep +1 1
A=,/L—— B= op, e, =1+ a%p? (3)
2ep ep +1
and
1, = O‘_Z(ep - 1) (4)

1s fully equivalent to Hy. The preliminary fpFW transformation of Hy is believed to
be responsible for the absence of operators which would lead to severe divergencies
in numerical applications [15]. This, however, is concluded mostly on the basis of
numerical calculations (see also Ref. [16]).

The next step is to determine a unitary transformation U which brings Hy
into block-diagonal form

h 0
— st _ +

H_UHlU_<0 h_). (5)

This transformation can be chosen in the following form [10, 17]:
2y R_0_
U= 6
<R+~Q+ 2_ ) ’ ©)

where

2y =+ RLR)™Y?2 Q- = —(1+RLR)™Y? R_ = -RL, (7)
and Ry is the root of the following operator equation [17]:

R = [(H1)a2] ™ [=(H1)a1 + R(H1 )11 + R(H1)12R), (8)

which corresponds to the assumption that R4 is a “small” operator as compared
to the other operators in the r.h.s. of Eq. (8). The symbols (H;);; refer to the
(4,7)-th 2 x 2 block of the Hamiltonian H; of Eq. (2).
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Once Eq. (8) is solved, the “electronic” 2-component Hamiltonian A4 as-
sumes the following form:

hy = QL (H1)11024 + QLR (H1 )01 24 + Q1 (H1)12 Ry 24

+ 028 RV (H1 )92 Ry 24 (9)

Upon combining this equation with iterative solutions of Eq. (8) one can derive
a series of approximations hap to hy, which are exact through the k-th order
in a? [10]. In this paper particular attention will be given to hy Hamiltonians, i.e.,
to those which are exact through the order of a?.

For the purpose of the present analysis let us consider the explicit form of
the operator equation (8). After substituting the appropriate 2 x 2 blocks of Iy
this equation can be written as:

2R = o®A[B,V]A — o?{R, T, }4 + o’ [AV A, R] + o*[ABV BA, R]

—o®RA[V, BJAR, (10)

where {... ...}; denotes the anticommutator. The analysis of the leading or-
der [10] in « for the operators entering Eq. (10) shows that R has the leading
order of o3. Through this leading order in « the approximate solution for R reads

R~ %a?’A[B,V]A (11)

and gives the simplest A4 BSS Hamiltonian investigated in Ref. [10]

ha=h") =T, + A(V + a?BVB)A + %am[v, B]AA[B, V]A. (12)

This Hamiltonian has been shown to be equivalent to the DK Hamiltonian through
terms of the order of a*.

3. Iterative solutions for R and the DK Hamiltonian

The use of the explicit operator equation (8) without reference to its rep-
resentation in a certain selected basis set offers quite obvious formal advantages.
This technique can be used to derive a variety of 2-component methods which are
exact through arbitrarily high order in o? [10, 11]. However, the use of iterative
methods brings about the question of their convergence and the related question
of the choice of the initial approximation to R. Given some initial approximation
R to R, the iterative scheme R("+1) = f(R(")) may not necessarily collect the
higher-order contributions efficiently enough.

The choice of R(") in the form given by Eq. (11) was based on the selection
of leading contributions with respect to «. However, one should note that the
anticommutator expression in the r.h.s. of Eq. (10) can be written in the following
form:

az{R’Tp}+ ={R, €p — 1}y (13)
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Thus, the anticommutator becomes apparently of the same order as R, though one
should remember that the operator (e, — 1) is itself of the leading order of a?. The
identity (13) immediately suggests that a useful initial approximation, say R, to
R will be generated by the solution of the following equation:

{R,e,}4 = o A[B, V]A, (14)
which can be cast into manifestly iterative form
(1+ep)R = a®A[B,V]A — R(e, — 1), (15)
with the solution
f ()
= ————— A[B, V]A(e, — 1)". 16
. r;)(l+6p)”+1 (B, V]A(ep ) (16)

One should note that Eq. (14) is equivalent to the commutator equation used in the
derivation of the DK Hamiltonian [3, 5]. In the BSS approach this equation appears
as a generator of the initial K which is then to be used in the iterative solution of
Eq. (10). To further analyse its solution and to avoid the use of infinite summations
it is convenient to introduce the matrix representation of the operator R.

The basis set representation of solutions of the commutator equations is the
common practice in the derivation of the DK Hamiltonian [3, 5]. The solution is
obtained by using a basis set which diagonalizes the p? operator*

<k‘|p2|]€/> = wkékyk/. (17)
As a consequence the same basis set diagonalizes the e,, T, A, and B operators.
In particular

(klep|k'y = Erbp . (18)
Thus, the solution R of Eq. (14) in the basis set | k) becomes

. . Dl

Ry = (k| RIK') = QBﬁa (19)
where

D}y = (kIDUK) = (K|A[B, V]AIK). (20)

One should note that R is equivalent to the exact R through the order of a?
and contains some contributions of all higher orders in «. In consequence, the
corresponding two-component Hamiltonian hy will be exact through the fourth
order in o and can be formally written as

hy =T, + A(V +a’BVB)A + %a(A[V, BJAR + RTA[B,V]A). (21)

*In the original derivation of the DK Hamiltonian [3] the set |k} is meant to be the momentum
eigenfunctions | k) and the commutator equations are solved for Fourier kernels of the correspond-
ing operators. In implementations of the DK method the momentum basis set is replaced by a
set of functions defined in the coordinate space with the usual boundary conditions in infinity
[18-20]. The accuracy of this approximation has been recently extensively tested [21].
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Tts matrix elements in the |k) basis set become

(k|halk"Y = (k|T, + A(V + o BV B)A|k')

1, 1 ; o
— Dyyn———D, 1, + Dypn ———D1.11, | - 22
oo ;( B e Dk + Dir Fon B ke (22)

It can be shown (see Appendix) that the a*-order operator given by Eq. (22)
is exactly equivalent to the DK Hamiltonian, i.e., hy = hPK and R = RPK. The
form of the DK Hamiltonian derived in this paper is much simpler than that of the
original AP [3, 5]. Moreover, the present method of its derivation reveals several
aspects of the iterative procedure [10, 11] of solving Eq. (10).

4. Discussion

The derivation of the DK Hamiltonian presented in this paper shows that
it belongs to the class of the hy BSS operators and corresponds to a certain par-
ticular form of the initialization of the iterative solution of Eq. (10). It is obvious
that in the algebraic approach [10, 17] to the block-diagonalization of Hy there are
infinitely many ways of defining the initial iterative step. The simplest one, given
by Eq. (11), was formally analysed in Ref. [10]. Though convenient from the point
of view of the formal analysis of the contents of the ho; Hamiltonians, this ap-
proximation is by no means the most efficient one in computational applications.
On the other hand, the solution for RPX is either given by the infinite operator
series (16) or in terms of its matrix elements (19).

For implementations of the DK method the use of the highly compact Eq. (22)
is obviously advantageous. However, the Hamiltonian defined in terms of its ma-
trix elements becomes basis set dependent. Thus, for the discussion of analytic
features of different 2-component Hamiltonians the iterative solutions for R are of
certain preference. It is worthwhile to note that by manipulating Eq. (10) several
other iterative schemes with explicit solutions for R can be developed [11]. This
resembles the strategies used in many-body theories of the electron correlation.
Their success depends on the efficiency of partial infinite summations of certain
classes of diagrams or in other words, on the choice of the iterative scheme for the
solution of certain nonlinear equations [22].

One of the ways of defining the so-called DK2 approximation [3, 5] is by
requesting that the corresponding Hamiltonian contains all terms through the
second order in the interaction potential V. Some preference of this choice has been
extensively discussed by Kutzelnigg [15]. According to the derivation presented in
this paper the DK2 Hamiltonian can be alternatively classified as a member of
the hy class of the BSS Hamiltonians. The difference between various ways of
initializing the solution of Eq. (10) amounts to different strategies of including
in the L.h.s of this equation as many as possible terms of the higher order in o?.
In consequence, the leading contribution to the initial R remains of the order o3
whereas the (incomplete) contribution of terms of the higher order in «? is hidden
among other operators which define the initial solution. This corresponds to partial
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summation of infinite series in o? which is a well-established method of avoiding
divergencies in quantum electrodynamics. One may expect that the most successful
method derived from the iterative approach to the solution of Eq. (10) should
majorize the contribution of these partial sums [11]. According to the present
analysis the initial R given by the solution of Eq. (14) is likely to be superior
to solutions obtained from other partitions of Eq. (10). This also shows a close
resemblance between the methods used to efficiently sum up the series in o? and
those employed in the context of many-body theories of the electron correlation.

The derivation of RPE clearly shows why the DK Hmiltonian should be
superior to other Hamiltonians of the BSS hy class. By combining in Eq. (10) the
2R term with the a?{R,T,}; term from the r.h.s. of this equation one enhances
the implicit summation of the higher order contributions. This can be seen from
the resulting operator equation (14), where e, has the leading term of the zeroth
order in o2 [10]. Although the efficiency of this rearrangement of Eq. (10) should
be higher than that of other iterative approaches, the convenience of using the
convenient formalism of the operator algebra is lost.

The development of 2-component Hamiltonians hgg, & > 3 can be accom-
plished either in terms of purely algebraic iterative solutions of the operator equa-
tion (10) or by iterating its matrix counterpart. For sufficiently high values of &
the two methods, which differ in higher order contributions, should give Ao, k& > 3
Hamiltonians of essentially the same accuracy. With the given initial approxi-
mation to the solution of Eq. (10), the iterative solutions can be ordered either
with respect to the powers of a or with respect to the powers of the coupling
parameter V.

The first choice was advocated in Ref. [10]. The formulation of the block-
-diagonalization problem presented in this paper gives a possibility of selecting
the higher order Ao, Hamiltonians [10, 11] by their ordering with respect to the
leading powers [10] of a?. The use of the coupling parameter is more in the spirit
of the original formulation of the DK method [3-5]. By the well-known rules of
the perturbation calculus, the contribution of the third order in V' must be totally
expressible [23] in terms of the transformation which gives the DK2 Hamiltonian.
This and higher order contributions are implicit in earlier derivations of the DK
Hamiltonian [4, 5, 10]. The V3-order terms have been recently discussed by Naka-
jima and Hirao [24]. Tt can be shown [10] that the DK Hamiltonian augmented by
these terms (DK3 Hamiltonian of Nakajima and Hirao [24]) is a member of the hg
class of the BSS Hamiltonians.
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Appendix

To show that the DK Hamiltonian derived in this paper is equivalent to the
one presented by other authors [3, 5] one needs to discuss only the term of the o*
order, i.e., the sum contributing to the r.h.s. of Eq. (22). In the usual [4, 5] form
of the DK Hamiltonian the relevant term is written as

1
h4 = —§OZ_2[W1,[W1,66P]], (23)
where the operator Wi is defined in terms of its matrix elements
O)kw
k kY = a3 ( 24
(Wi [1) = %L (24)
and
= BA[R, V] = O] (25)
with
ap
= ) 2
R T+e, (26)
Note that the units are adapted to our definitions of operators.
Taking into account that [1]
af=—-PFa and [%=1, (27)
the matrix element (k|h4|k’) = (hd)gs of (23) becomes
(0115 (O1) ke
h4 ,_——4 Epi+ By + 2Egn
()i “ 6; Fr ot Bpn) (B 1 Eir) o0 & B+ 2B
= —0[462 01 kk‘” 1 (OT)k”k’ =+ (Ol)kku;(oir)kuk/ . (28)
o Er + Eyn 1 Epn+ By 1

The (1,1) block of this 4 x 4 matrix is exactly equivalent to the matrix element
(22) of the 2-component DK Hamiltonian.
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