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The form of the density of states for a tight-binding model with the first
and the next-nearest neighbour hoppings for a rectangular planar lattice and
a shift of the chemical potential are calculated. This is newly and comprehen-
sively formulated integral form illustrated numerically, helpful in approach
to two-dimensional superconducting models. In some particular cases the
complete analytical forms of the density of states are obtained. It is shown
that for all cases the density of states has a single van Hove singularity of
the logarithmic type at the identically defined point. The proper approxi-
mate analytical representations are found. The difference between the exact
numerical and approximate analytical forms is evaluated and illustrated.

PACS numbers: 74.20.—z, 74.20.Fg

1. Introduction

The concept of combination of the van Hove scenario with the BCS model
has already received considerable attention in the context of high temperature
superconductivity, e.g. [1-10]. Since this approach seems to be a successful one,
the applied formalism is worth investigating more deeply.

This paper is based on the results of our previous work [11] and could be
treated as a development and interesting application of the formalism presented
therein.
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As it was shown in [11] any anisotropic superconducting system can be con-
sidered in the frame of the extended BCS model to which the additional scalar field
of the density of states is affixed. This new scalar field, defined for the isotropic
momentum space, reflects the distribution of quantum-mechanical states after the
conformal space transformation from anisotropic into the isotropic one, includ-
ing involved mechanisms of internal interactions. The established theory allows us
to replace an arbitrary one-particle excitation spectrum with the suitably chosen
parabolic form, which, in principle, makes possible to apply the BCS model in
explaining high-T¢ superconductors (HTSC) properties. Although the precise defi-
nition of this scalar field for an arbitrary anisotropic system is a complex problem,
it has been proved [11] that for S-paired superconducting systems the scalar field
reduces itself (within the extended BCS model) to its mean value, which should
be identified as the density of states dependent on the quasiparticle energy only.
Therefore, in order to investigate those HTSC in which the Cooper pairs are cou-
pled in the pure S state, one can consider the BCS model with the real density of
states which fluctuates in the vicinity of the Fermi level and can possess the van
Hove singularities.

Recently, in a number of papers, cf. e.g. [11-18], the authors considered a
quasi-two-dimensional system of Cu and O atoms forming a rectangular planar lat-
tice for which the tight-binding Hamiltonian can be defined. Hence, in the present
paper we concentrate on the calculation of the density of states for this system,
when the nearest and the second neighbour interactions, with the proper hopping
parameters, as well as the occupation parameter, are included into the dispersion
relation.

Let us emphasize that a precise calculation of the exact form of the density
of states for the discussed dispersion relation is cumbersome. The solutions found
so far (see e.g. [8, 12, 13, 17]) seem to be incomplete or even incorrect [12]. Now,
based on the introduced formalism [11], the complete form of the density of states
for three particular models and their approximate expressions near the van Hove
singularities can be derived analytically. Additionally, their general form can be
obtained using numerical methods.

2. The approximate DOS forms obtained analytically

Let us consider a two-dimensional system which can be described in terms of
the tight-binding one-band Hubbard model, when the one-particle energy spectrum
(dispersion relation) is given in the form (cf. [11-13]):

E(p1,p2) = —2tg[cos(prar) + cos(paaz)] + 41 cos(pray) cos(paaz) —t2, (1)

where ¢y and ] represent the nearest and next-nearest hopping, respectively. The
occupation parameter ¢ fixes a shift of the Fermilevel in the case of the doping and
non-half-filled band, and it can be identified with the chemical potential [5, 19].
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In order to define the exact density of states form for such system we ap-
ply the formalism of the scalar field of the density of states developed recently
[11]. According to this formalism the complementary variable ¢ is defined by the
relation

¢ = arctan(f), (2)
where

tan 2222 T<in(q —(2t1/t0)
= a12 1 |: : ( 2p2):| ’ (3)
tan =L | sin(ayp1)
and the coordinate system is defined in the new (&, ¢)-space. Then, the density of
states can be expressed by the formula

b

vem =25 [T aE e (1
where n = 2t [ty and
opy opy
Hep)=| &% 6
9 By

is the Jacobian corresponding to the transformation into the new coordinate sys-
tem. In order to find J(&, ) and hence v(€,7), p1 and ps as functions of ¢ and
¢ have to be derived firstly. From Eqgs. (1) and (2), owing to their symmetry
relations, p; and ps have the following properties:

p(=5-0) =) or i (=7) =mies) ()

Below in the paper the parameter z is equal to (£ 4 t3)/2tg. According to
Eq. (6) the integration range in Eq. (4) may be limited to the interval [0, T],
providing we double the result.

The functions p; and ps, however, cannot be derived analytically for an
arbitrary 7. In fact, there exist only a few specific cases, e.g. n = &1 and 5 = 0,
when the exact analytical forms of the density of states are available. As it was
shown in [11], formula (4) can be written as

2 1 T 3Fz
)= ————=F | o \/—
V(&£ m2tgaras /1 + 2z (2’ 4 ) ’ @

2 1 T 8v4 — 22
v(£,0) = N I , (8)
T2tga1as \/8—,22—1—4«/4—,22 2 8 — 22 4 4/4 — 22

where F'(¢, ) is the first type elliptic integral, which is of the form [20]

and

T z do
(T :/ e )
(2 ) 0 11— k2sin’a
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The above functions have no poles except singularities of the logarithmic type
for z — +1 (]z] < 1) or z — 0, respectively. To derive the complete form of the
density of states for arbitrary values of n numerical methods have to be applied.
Nevertheless, some approximate results can be achieved analytically when 5 < 1
by means of the method used to obtain Eq. (8). It should be emphasized, however,
that these calculations require a careful analysis, as some results obtained so far
are simply incomplete [8, 12].

Let us rewrite Eqgs. (1) and (2) into the more convenient expressions for the
analytical calculations. After introducing the following substitutions:

k k t
ki = aip1, ko =asps, =z =tan 71, Ty = tan ?2, z = f;;oz’ (10)
they take the forms, respectively
5 2 2 tnlt 2 2 n 4

71 =2 - ——_ - —— — _

1+27 1423 7 I1+22 1423 (1+2)(1+23))]’

(ci2)

T2 72

tan ¢ = ) (11)

e
= (+%57)
It has been already shown [11] that for » = 0 and n = +1 both z; and #2, and
consistently k1 and ks, can be derived analytically from Eqgs. (11). Our present
aim is to consider |n| < 1 using the perturbation method with respect to the case
of n=0.

For = 0 we have [11]

W (L4 )+ /(L + )22+ 412(4 — 22)
! 22— z) 1 ’
where ¢ = 1, 2 and f = tan ¢.
For n# 0 and || < 1 Eq. (11) can be transformed to the form

2 2 9
14+2? 1+a%’ xry (13)
where the expressions
Z=z(1-n)
|1 - 4f2(2 — 2)?
214+ )2+ 422 - 2)+ (1+ f2) /(1 = f2)222 + 16 f2

_ nlld 22— 2)(f* — 1)
@ =f+nfl {f Z(1+fz)z+2(2—z)+\/(1—f2)222+16f2” .

contain the perturbation contributions calculated with regard to Eq. (12). The

structure of reduced Eq. (13) is the same as that for y = 0, but now Z and & are
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functions of z and ¢ dependent on the parameter 7. Nevertheless, we are able to
formally solve Eq. (13), employing the results for 7 = 0 obtained in [11].
Since, for e =1, 2

9¢ — \ 97 0z od 9z ) 2ty’
Oki _ (0k; 00  0k; 0Z\ Of (15)
de  \O0® Of  9Z Of | Oy’
hence
07 07
a—z—1—|—7]f1(2,f), W—an(Zaf)a
O 0P
g7 = LH s, o= nh D), (16)

where f;(z, f) denote some functions of z and f, whose explicit forms are not
essential in the applied perturbation method.
Thus, the Jacobian takes the form

Ak

Jeg) = | 35 A o (17)
’ 2t0a1a2 %kfz % ng ’

where O(7) denotes the remaining terms proportional to n and 7% which, as
perturbations, are assumed to be smaller than the main term of the Jacobian and
can be neglected. Then, after some transformations and including Eq. (6), the
density of states can be written as

1 /4 1+ @2
thoalaz 0 (1—|—f2)\/Z2(1—@)2—|—16@2
where 7 and @ are given by Eq. (14). In order to evaluate the approximate be-

v(&n) = df, (18)

haviour of v(£, ) function at its singular points, we restrict our considerations to

the case of |z| <« 1, which is complementary to the case of || < 1. After omitting

small contributions containing z, Eqgs. (14) reduce themselves to the form
1-f

2
Z:Z—I—n(—) , =1

1+ f (19)

Now, substituting Eqs. (19) into Eq. (18) we state that the density of states
singularities appear only for z = —n. The proper approximate function can be ob-
tained from Eq. (18), in which the singularities correspond to the lower integration
limit when f — 0.

Hence, we finally obtain

v(E, ) = ——

8

n )
72oaras |z + 7|

(20)
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Thus, the logarithmic singularity appears for £ = —(4¢; + #2). This conclusion is
in agreement with more general results [8].

It is worth emphasizing that the correctness of the above result and hence
the perturbation method used, has been confirmed by the independent analytical
approximate approach, as well as by exact numerical calculations presented in the
next section. It should be also clarified that the linear expansion of Eqgs. (11) with
respect to 7 leads to the incorrect results, since the logarithmic singularity does
not include the influence of additional terms arising for non-zero 5, and its form
is the same as for n = 0 (cf. Eq. (20)). The performed approach, however, shows
that the density of states possesses a logarithmic singularity at & = —(4¢1 + t3)
for n <« 1, which means that it is very sensitive to even a small correction of the
next-nearest hopping.

On the other hand, employing formula (7) and some formal relations [20], we
prove that the logarithmic singularities are also present for the cases of n = £1,
when |z| < 1 and z — F1, respectively. Then, the density of states reduces itself
to the form

1 1 64
+n) = 1 . 21
V(& ) m2toaras /1 + 2 nl:l:z (21)
Therefore, the enhanced logarithmic singularities occur again for £ = —(4t1 +¢5),

if n = £1, and we may finally conclude that the logarithmic singularities, the same
as those for || < 1, arise if € = —(4¢; + t2). This is a general statement for an
arbitrary i as it is proved in the next section.

3. The general case: analytical approximations and numerical results

While including into the calculations the values of 7 it has been assumed
that they are taken from the interval —1 < 7 < 1 only. This assumption implies a
restriction on the parameter z, which after taking into account the extreme values
of energy &, Eq. (1), can be written as

24 n<2z2<24. (22)
In order to obtain the general form of the density of states for any value of g
we employ Eq. (4). Firstly, let us note that the Jacobian can be found for an
arbitrary 7 in the following way: differentiating both sides of Eqgs. (1) and (3) by ¢
and ¢ we get a set of four equations from which the partial derivatives dp;/9¢ and
Ip;/0p (i =1 or 2) can be derived. Now, inserting these expressions into Eq. (5),
we find the Jacobian in the form

. -1

(1—UCOS]€2)2+%(1—7}COS]€1)2 % (23)
To eliminate k; and kg from the above formula we have to use Egs. (1) and
(3) together with their transformed forms Eqgs. (11). Introducing the additional
symbols (cf. Eq. (10))

sin k1

J = (Qtof)_l

sin ko
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S "
we can rewrite the latter of Eqgs. (11) as follows:

f=umQn, (25)
where

Q =2+ q —v¥g. (26)

Now, considering the former of Eqgs. (11) after the inclusion of the substitutions,
Eq. (24), ¢, being a solution of the appropriate quadratic equation, can be ex-
pressed by v and the parameters z and #:

q2=1

AL =)+ (=) + 2) £ /(1= v?2)2(n+ 2)% + 1602 (1 + 21) 1)
Al —n—v2(1+ )] '

Taking into account the definition of ¢ given in Eq. (24) each of the derived forms

of ¢ can constitute an allowed solution, providing it satisfies the condition
0<¢<, (28)

which is fulfilled, however, only for values of v taken from the interval [0,1] at fixed
n and z. Moreover, the inequalities, Eq. (22), imply the following restrictions:

(L= <1+ <(L4+)* 0<2+(2—n) <4,

—2(1—n) <z+n<2(1+79), (29)

which, in turn, allow us to estimate ¢; » for some specifically chosen values of v:

_ et = (z+n)

q1,2 = if v=0
4(1=mn)
and
1 v/ .
q1,2 = LrnEvlta if v=1. (30)

2n

Hence, we conclude that the only solution which satisfies the inequalities, Eq. (28),
for the values of 1 under considerations, is ¢;. Now, employing Eqs. (24)—(27), af-
ter the inclusion of Egs. (10) and (11), we eliminate & and k2 from the Jacobian,
Eq. (23). After a few transformations the density of states function can be ex-
pressed as follows:

2

thoalaz

< [( Q) df 51

v(€,n) =

29

L4 n)(1 = v2) = 25(Q = )2 + | (L +n)(1 — v?) & — 29(L —v)
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whereas () reduces itself to the form

292

R G e g s gy

2(1 = v?)(1 + 21)
V(L= v2)2(z = )2 + 1602(1 + 29) + (2 — n)(1 = v?)
In order to find out the numerical form of the density of states function defined

by Eq. (31), we have to solve Eq. (25) including Eq. (32), and then derive v as
a function of f independently of fixed values of z and &, when f varies from 0

-n|. (32

to 1. In turn, inserting f = f(v;z,7n) into Eqgs. (30) and (31), we can compute the
integrals and, in consequence, plot the function v(z,n), Fig. 1.

On the other hand, based on the obtained forms of Egs. (31) and (32), one
can derive analytically an approximate function of the density of states for allowed
values of z and 7, when they satisfy the relation |z + n| < 1. Firstly, let us note
that if we put z + 1 = 0, the function @ reduces itself to the expression

VIFn+uv/I=7
VI=n+u /47

Since the singularities of the density of states in Eq. (31) have their origin in the

Q=v (33)

integration within the small f (f < 1) region, we can restrict our considerations
by virtue of Eq. (25) to the case of small v, which fulfills the additional condition

v /1—1n.

Hence,

Q 1+n .

Q_ [1+n . — 4

; T if z24n=0 (34)
and

2 2(1 — n? .
%: (L—n") —n| if z4+9#0.(35)
vt L= [ )2 4 1602 (1= 0?) + (2 + 1)

Now, holding consistently the assumption that z+#7 = 0 in all regular parts of the
integrand in Eq. (31), and replacing

f=v<1_—77)%, (36)

I+n
the density of states function, Eq. (31), for |z + 5| < 1 can be approximated as
follows (Fig. 2):

! - O RO

= |
V(Z,U) T odrds /] = 7 n =]

(37)

Finally, one may conclude that the logarithmic singularities in the density of
states occur always at & = —(4¢; +t2). Nevertheless, to be in agreement with the
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Fig. 1. The complete form of the density of states in the reduced dimensionless units:
N(z,m) = v(»,n)/7*toaraz. The function achieves the infinity for z 4+ 5 = 0.

Fig. 2. The form of the density of states approximated within the singularity region
in the reduced dimensionless units: N(z,1) = v(z,n)/7*toaiaz. Negative values of the
function are replaced by 0.

Fig. 3. The difference between the complete and approximated results of the density
of states in the reduced dimensionless units within the region of positive values of the

approximated formula.

approximation used, the derived formula can be applied only in the close vicinity
of singularities, because far from them it becomes negative if n — £1 (Fig. 3).

4. Conclusions

The presented results show that the density of states has always one logarith-
mic singularity for each fixed value of the hopping ratio n = 2t1/tp, which in the
limit 7 — £1 is intensified by (1 F 77)_%. However, in the case of larger distances
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from singularities the approximate formula for an arbitrary 5 differs from the exact
result substantially, so it can be employed in the limited range. Only the exact
formula can be applied successfully in the frame of the extended BCS theory to
investigate thermodynamical properties of high-7; S-paired superconductors for
all n and z under discussion (cf. [11]).

In order to consider systems for which the symmetry of the Cooper pairs wave
function is either p- or d-like, the scalar field of the density of states (expressed
by the Jacobian [11]) has to be included instead of the density of states derived
above in the paper.

Note that the scalar field of the density of states encloses a complete in-
formation about the distribution function and system symmetry, whereas in the
density of states such information becomes averaged over additional coordinates,
except &, i.e., for example, over angular coordinates [11].
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