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derived from.
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1. I n t rod uct io n

In the present paper the Kl ein{ Gordon form ul ati on of the T akagi { Taupi n
equati ons (TTE) is described. The TTE, havi ng the form of a set of two parti al
di ˜erenti al equati ons for two independent functi ons, have been derived by T akagi
and T aupi n [1, 2] for the electrom agneti c Ùelds in crysta ls from the Ma xwel l equa-
ti ons. The TTE are parti al di ˜erenti al equati ons of the hyp erbol ic typ e. These
equati ons can be converted to the Kl ein{ Gordo n equati on (KG E) [3] describing
the scalar Ùeld wi th a m ass in relati vi stic quantum Ùeld theory . Natura l ly solu-
ti ons of the KG E are well kno wn and for thi s reason soluti ons of the TTE in the
La ue [4] geom etry have been presented earl ier [5]. Ho wever, the present way of ob-
ta ining these soluti ons is very conveni ent for further appl icati ons for two reasons.
Fi rstl y, the use of externa l di ˜erenti al form s form alism and the general ized Stokes
theo rem [6] m ake the derivati on of soluti ons clearer. Thi s is very useful in the
La ue case and even more in the Bra gg case [4], where the mixed bounda ry condi -
ti ons m ake the soluti ons much m ore com pl icated. Secondly, the form ulatio n in the
Kl ein{ Gordon f orm gives the possibi l ity to use the very well -known mathem ati cal

(767)



768 J. Borowski

m etho ds connected wi th the KG E. Thi s is very useful for a descripti on of di ˜use
scatteri ng caused by m icrodefects [7], where thei r presence requi res perturba ti on
calculati ons [8]. The form ulae presented in thi s work are val id for ideal crysta ls
but the sam e form ulae can give soluti ons for noni deal crysta ls in the zeroth order
of perturba ti on calcul ati ons [9]. One cannot further reduce the am ount of math-
emati cal form ulae, because thi s could lead to a loss of m athem ati cal cl ari ty , but
al l these form ulae are qui te sim ple and stra ightf orw ard. On the other hand, the
ful l Ùnal form ulae used for the sim ulati ons are given below and can be di rectl y
appl ied, e.g. in the Ma them ati ca com puter package.

The soluti on of the TTE for both a narrow and wi de inci dent beam are
careful ly analyzed in thi s work. Na rrow beam s are com monly used in the section
to pography exp eriments [10{ 12]. Thei r descripti on based on the conventi onal X- ray
dyna mical theo ry [14, 15] is com pared to the appro pri ate soluti ons of the TTE.
Form ati on of the so-cal led quasi-plane wa ve on the base of soluti on of the TTE is
also presented. Thi s typ e of soluti ons (qua si-plane waves) are com m only used in
inv estigati ons of m icrodefects [7] and for m any other pro blems.

2. T ak agi { T au p in equ at i ons

Let us consi der the di ˜ra cti on of an X-ray beam by a crysta l of para llelepiped
shape. For a given reÛection vecto r h, whi ch is ortho gonal to the reÛecting ato m ic
pl anes, the fol lowi ng two compl ex vectors k0 and k h , wi th kh = k0 + h, are deÙned.

¯ The real parts of these vecto rs are lyi ng in the plane form ed by h and the
wa ve vecto r K e of the inci dent beam. Thi s plane is usual ly cal led the di ˜ra c-
ti on plane (pl ane of Fi g. 1).

¯ The vecto rs k 0 and kh m ake the Bra gg angle ˚ B wi th the reÛecting planes,
and j k 0 j = j kh j = ¡ 0

c
[ 1 + 1

2
R e( â 0 ) ] , K = j K e j = ¡ 0

c
= 1

Ñ
, where ¡ 0 i s the

frequency of the inci dent wave, c | the vel ocity of l ight in the vacuum,
â 0 | the zeroth Fouri er coe£ cient of the electri c susceptibi l i ty of the crys-
ta l , and Ñ | the wa velength of the inci dent beam. The di recti on of k0

corresponds to the Bra gg maximum in the ki nem ati cal di ˜ra cti on theory [4].

¯ The imaginary parts kI of k0 and kh are equal and deÙned as fol lows: j kI j =
¡ 0

c

j I m ( â 0 ) j

2 cos ˚ B
; k I i s para l lel to the reÛecting pl anes.

Two co-ordi nate systems (x ; z ) and ( u ; v ) , are used in the calcul ati ons (Fi g. 1).
The x -axi s is lyi ng in the entra nce surf ace of the crysta l and the z -axi s is ortho go-
nal to i t. The di recti ons of the u - and v -axes are para l lel to the di recti ons of Re[k 0 ]
and Re[kh ], respectivel y (u and v are usual ly denoted by s0 and s h , respecti vel y).
Simpl e geometri c consi derati ons give the f ol lowing tra nsform ati on between ( x ; z )

and ( u ; v ) :
˚

u

v

Ç

= Ï

1

sin( 2 ˚ B )

C h ; À S h

À C 0 ; S 0

x

z
; (1)
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where S j : = sin( ˆ j ) ; C j : = cos( ˆ j ) ; j = 0 ; h . The di recti on of the x -axi s is chosen
in such a way tha t always ˆ 0 > 0 . The sign in (1) is to be ta ken positi ve when
ˆ 0 > ˆ h , and negati ve otherwi se.

The electri c inducti on Ùeld in the crysta l , as well as in the inci dent beam,
is spl i t into two polarizati on com ponents, ortho gonal to the di ˜ra cti on plane and
para l lel to i t. The di ˜erenti al equati ons for these two states of polarizati on di ˜er
onl y by a constant C (C i s usual ly cal led a polari zati on facto r for the am pl i tude)
[1, 2, 4]. The further considerati ons are given for a Ùxed polarizati on state, so the
electri c Ùeld is described by a scalar functi on.

The incident beam is given by the f ollowing form ula:

D e ( r ) = A ( r ) exp( À 2 ¤ iK e Â r ) (2)

wi th A ( r ) being i ts pseudo-am pl i tude.
The electri c inducti on Ùeld, to be calcul ated in the crysta l in the two -wave

appro xi m atio n [2, 4], is sought in the fol lowi ng form :

d (r ) = d 0 ( r ) exp ( À 2 ¤ i k 0 Â r ) + d h (r ) exp( À 2 ¤ ik h Â r ) ; (3)

where the pseudo-ampl i tudes d j (r ) are slowl y- varyi ng functi ons, in contra st to the
hi ghly oscil lati ng exponenti al term s. The Ma xwel l equati ons are appl ied to Ùnd the
pseudo-am pl itudes d j ( r ) but in the X- ray range som e term s m ay be neglected and
the Ùnal form of the di ˜erenti a l equati ons is qui te speciÙc. Takagi ' s consi derati ons
lead to the fol lowi ng form of di ˜erenti al equati ons for the pseudo-am pl i tudes d j ( r )

in the ideal crysta l :

@0 d 0 = À iad h ; @h d h = À ibd 0 ; (4)

where @j : =
Re [k j ]

j Re [k j ] j

À
@

@x
; @

@z

Â
; a = ¤ K C â

h
; b = ¤ K C â h , and â h , â

h
| the Fouri er

coe£ cients of the electri c susceptibi l i ty of the crysta l .
Cha nging vari ables in the TTE (4) and intro duci ng new symbols ` u and ` v

for the pseudo-am pl i tudes

d 0 ( x ; z ) = ` u ( u ( x ; z ) ; v ( x ; z )) ; d h (x ; z ) = ` v ( u ( x ; z ) ; v (x ; z )) ; (5)

where u ( x ; z ) and v ( x ; z ) are given by (1), one gets

@u ` u = À ia` v ; (6a)

@v ` v = À ib ` u ; (6b)

where @¥ := @

@¥
; ¥ = u ; v . Going from the l inear set (6) of di ˜erenti al equati ons

to the second order di ˜erenti al equati on f or ` u or ` v and setti ng

` ( u ; v ) =: W ( u + v ; u À v ) = W ( t; y ) ; (7)

where ` i s ` u or ` v , the KG E [3]

( @2
t

À @2
y

+ ab ) W = 0 (8)

for functi on W i s deri ved. In thi s way, both ` u and ` v are obta ined by solvi ng the
same KG E (8). The expl icit form ula e for ` u and ` v di ˜er only, because di ˜erent
bounda ry condi ti ons have to be used for these Ùelds.
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3. Sol uti on s for t h e L au e geom et r y

In the Laue geom etry the inci dent beam is f all ing on one surface of the
para l lelepiped crysta l (Fi g. 1) and the di ˜ra cted beam, propagati ng along the
v -axi s, is emitted from the opposite surface (the lower side in Fi g. 1). The electri c
inducti on of the inci dent beam is assumed to have the fol lowi ng form :

D e ( r ) = A ( w ) exp( À 2 ¤ iK e Â r ) ; (9)

where w i s co-ordi nate across the beam (Fi g. 2). In order to sim ulate the usual ly
exp erimenta l condi ti ons, the functi on A ( w ) is ta ken in the fol lowi ng form :

A ( w ) = f k ; l ( w À l À k ) ; (10)

where for positi ve argum ents x

f k ; l ( x ) =

8
>><

>>:

0 x Ñ l + k ;

exp
h

À
( x À l )

2

k 2 À ( x À l ) 2

i
; l < x < l + k ;

1 ; x ç l ;

(11)

and f ( À x ) : = f ( x ) . Thi s is an analyti cal functi on wi th connected support [6]. In
the case when k § l thi s functi on is very close to the non-smooth characteri s-
ti c functi on (the step functi on) of the area [ 0 ; 2 l + 2 k ] but for al l values of the
parameters l and k i t is analyti cal .

Fig. 1. Geometry of di˜raction. The X -ray b eam (shadow area) is fallin g on the crystal

(rectangle) along the K direction. The Ùelds inside the investigated crystal are obtained

using the co-ordinates and . For a given point the curve is lying on the

entrance surf ace of the crystal b etw een the characteristic lines ( and ) parallel to

the and directions, respectively , and meeting in . T he Ùelds in the point dep end

linearl y on the Ùeld of the incident beam on the curve . I f takes such a place that

all of is lying outside the illu min ated (shadow ed) area then the Ùeld in vanishes.

It fol lows from the Ma xwel l equati ons the conti nui ty of the electri c induc-
ti on D on the entra nce surface: the D com ponent norm al to the surf ace is conti n-
uous but for X- ray radi ati on the refracti on coe£ ci ent is very close to uni ty so tha t
also the ta ngenti al com ponent of the inducti on is to a very good appro xi mati on
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Fig. 2. Geometry of the boundary condition (12). T he X- ray beam bounded in space

(shadow ed area) is falling on the crystal of Fig. 1. T he electric inductio n Ùeld of the

inciden t beam is given by the analytical function A of the co-ordinate w across the

b eam (Fig. 3). T he crystal can be rotated around O (the left edge of the illumi na ted

area). The point O has co-ordinate x = 0 for any value of the rotation angle ˜ but the

x co-ordinate of the right b oundary (p oint P ) dep ends on ˜ .

conti nuous. Co mpari ng (2) to (3) on the entra nce surf ace S ( z = 0 ) and ta ki ng into
account tha t = (1 + â ) one gets

D ( ) exp[ 2 ¤ iK cos(ˆ )( ˜ ˜ ) x ] d ( x ; 0 )

= d ( x ; 0 ) exp( 2 ¤ i ) ; (12)

where ˜ = â tan ˆ , and ˜ is the angle of rota ti on of the crysta l along a l ine
ortho gonal to the pl ane of Fi g. 2 and going thro ugh O . The left side of (12) is a
slowl y varyi ng functi on of x for smal l values of ˜ ˜ . On the contra ry, the ri ght
side of (12) conta ins the hi ghly oscil lato ry term exp( 2 ¤ i ) . For thi s reason
form ula (12) can be ful Ùlled onl y when both sides of (12) v anish. In thi s way, f rom
the Ma xwel l equati ons alone, the bounda ry condi ti ons for the TTE are

d ( x ; 0 ) = A [x cos( ˆ ˜ )] exp[ 2 ¤ iK cos( ˆ )( ˜ ˜ ) x ] (13)

and

d (x ; 0 ) = 0 : (14)

From (6a), (13), and (14) i t fol lows:

@ ` = 0 (15)

and

` = d (x ; 0 ) : (16)

Equati ons (13), (14), and (6b) give the boundary condi ti ons for `

` = 0 (17)

and

@ ` = ibd ( x ; 0 ) : (18)

From (6) i t fol lows tha t ` as well as ` fulÙl the same di ˜erenti al equati on
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( @u @v + ab ) ` = 0 ; (19)

whi ch is to be solved under bounda ry condi ti ons (15) and (16) for the Ùeld ` u or
(17) and (18) for the Ùeld ` v . In order to Ùnd the Ùelds ` in every point P l yi ng
in the crysta l or on i ts exit surf ace (Fi g. 1) the f ollowing f uncti on R P i s deÙned:

R P ( u ; v ) : = J 0 [ 2
p

ab
p

( u P À u )( v P À v ) ] ; (20)

where ( u P ; v P ) stands f or co-ordi nates of the point P . For a given P the area of
the tri angle P B A i s considered. The line AP (or Û1 ) is para l lel to the u -di recti on
and P B (or Û2 ) | to the v -di recti on. For every point ( u ; v ) wi thi n the tri angle
P B A the value of ( u P À u )( v P À v ) under square root in (20) is positi ve. It m ay be
veri Ùed tha t the functi on deÙned in (20) sati sÙes(19) and the bounda ry condi ti ons

@u R P j Û1
² 0 ; @v R P j Û2

² 0 : (21)

In order to Ùnd ` u and ` v in P tw o externa l di ˜erenti al f orm s [6] are deÙned

¨ u : = À ( R P @u ` u ) du À ( ` u @v R P ) dv (22)

and

¨ v : = ( ` v @u R P ) du + ( R P @v ` v ) dv : (23)

From the deÙniti ons and the fact tha t (@u @v + ab ) R P ² 0 i t fol lows tha t the
externa l deri vati ve [6] f or both these form s vani shes

d ¨ = 0 : (24)

Appl yi ng the Sto kes theo rem stati ng the integ ra l of the externa l deri vati ve of a
di ˜erenti al form over a given area is equal to the integ ra l of thi s form over the
bounda ry of thi s area, i .e.

0 =

Z

P B A

d¨ =

Z

Û1 [ Û2 [ Û3

¨ (25)

and involving Eqs. (21) one gets

À

Z

Û1

( @u ` u ) du À

Z

Û

[ ( R P @u ` u ) du + ( ` u @v R P )dv ] = 0 (26)

and
Z

Û2

( @v ` v )dv +

Z

Û

[ ( ` v @u R P ) du + ( R P @v ` v )dv ] = 0 ; (27)

where Û i s ori ented curve from B to A (Fi g. 1). T aki ng into account tha t

Û1
( @u ` u ) du = ` u ( u A ; vA ) À ` u ( u P ; vP ) and using (6), f rom (26) one gets

` u ( u P ; v P ) = ` u ( u A ; v A ) À

Û

( ` u @v R P )dv : (28)

In the sam e way the fol lowing expression for the Ùeld ` v i s obta ined:

` v (u P ; v P ) = ` v ( u B ; v B ) À

Û

ibR P ` u dv : (29)
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From (26) and (27) i t fol lows tha t if for a given point P the curve Û i s lyi ng on
the non- il lum inated area of the entra nce crysta l surface then the Ùelds ` vani sh
in P . Thi s is a general feature of parti al di ˜erenti al equati ons of the hyp erbol ic
typ e: the Ùelds pro pagate only between characteri sti c l ines.

4. Solu t io ns f or a sm al l wi dt h of t h e inci den t b eam

The case when the wi dth of the incident beam is m uch smal ler tha n the
length j B A j of Û (Fi g. 1) is com m on in section to pography arra ngements [10{ 12].
From (1) i t fol lows tha t the dependence of the co-ordi nates ( u ; v ) on the x (Fi g. 1)
for Û has the form :

Û : [ 0 ; ¯ ] 3 x 0
7À ! Û( x 0 ) =

˚
u

v

Ç

= Ï

1

sin (2 ˚ B )

˚
C h x 0

À C 0 x 0

Ç

(30)

and
˚

u P À u

v P À v

Ç

= Ï

1

sin (2 ˚ B )

C h ( x À x 0 ) À S h T

À C 0 (x À x 0 ) + S 0 T
: (31)

Setti ng in (13) ˜ = ˜ 0 (the dependence of d h on the ˜ was analysed in [13]) we
have for d 0 on the entra nce surf ace

d 0 ( x 0 ; 0 ) = A [ x 0 cos(ˆ 0 À ˜ 0 )] (32)

for x 0
2 [0 ; ¯ ] and 0 outsi de thi s region, where ¯ =

2 ( l + k )

c os( ˆ À ˜ )
. Appl yi ng (30), (31),

and (32) to (29) and then using (5), one gets the expression for d h

d h (x ; T ) = À ib
C 0

sin(2 ˚ B )

¯

0

dx 0 J 0 (2
p

ab
p

q ) f A [ x 0 cos( ˆ 0 À ˜ 0 )] g ; (33)

where q = ( u P À u )( vP À v ) i s a functi on of x 0 given by (31). Changing the vari able

in (33) to y = 1

2 C C
+

x À T t an ˆ À x

T sin (2 ˚ )
, where ˆ j = ˆ 0 for plus in (1) and ˆ j = ˆ h

for minus in (1), one gets

d h (x ; T ) = ibC 0 T

y À

y

dy J 0 2
p

ab T C 0 C h

1

(2 C 0 C h ) 2
À y 2

È f A [ x 0 cos(ˆ 0 À ˜ 0 )] g j
x = x ( y )

; (34)

where y 1 = 1

2 C C
+

x À T ta n ˆ

T sin (2 ˚ )
. In the l im iting case when ¯ i s very smal l , the integra l

in (33) can be changed to À ¯
T sin (2 ˚ )

m ulti pl ied by the value of the integ rand in y 1

and the appro xi mate f orm ula ta kes the fol lowing form :

d h (x ; T ) = À ib
¯ C 0

sin(2 ˚ B )
T J 0

2
p

ab T
p

C 0 C h

1 À

s2

L 2
; (35)

where s = x À
T

2
( tan ˆ 0 + ta n ˆ h ) ; L = T

2

sin (2 ˚ )

C C
. In order to obta in (35) A ( y 1 ) = 1
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wa s set. The l im iti ng form ula (35) was Ùrst obta ined by Ka to [14, 15] using qui te
di ˜erent considerati ons, and then by Takagi [5]. Both not conta in the factor ¯

describing the dependence of the emi tted Ùeld on the wi dth of the incident beam.
The presence of factor ¯ in (35) expresses the energy conservati on law in the
case of a ful ly coherent inci dent beam : the to ta l energy of the incident beam
is proporti onal to ¯ 2 and the emi tted beam s m ust tra nsport al l thi s energy. The
dependency of d h on ¯ in (35) can be used to investigate a degree of coherence of the
inci dent beam because for the incoherent or partl y coherent beam the dependence
on ¯ in (35) wi l l ta ke another form [16].

Formul a (34) was di rectl y appl ied to obta in the di ˜ra cted am pl itude d h for
a sil icon crysta l set f or the reÛection h = [ 3 3 3 ] , ˚ B = 19:84£ . For the surface
ori enta ti on n = [ 1 1 0 ] (n being externa l norm al vector to the entra nce surface of
the crysta l) the values of the angles ˆ are: ˆ 0 = 5 5 : 1 £ ; ˆ h = 1 5 : 4 £ . The thi ckness
of the crysta l wa s ta ken as T = 2 7 0 ñ m , C = 1 and the wa vel ength was ta ken for
the Cu K ˜ 1

radiati on. The functi on A for l = 2 0 ñ m and k = 0 :0 2 ñ m (f ul l l ine),
l = 1 5 : 0 2 ñ m and k = 5 ñ m (bro ken l ine), l = 5 : 0 2 ñ m and k = 1 5 ñ m (dotted
l ine) ta ken as input condi ti on (32) is presented in Fi g. 3. The ful l wi dth of the
inci dent beam is ta ken to be equal to 4 0 : 0 4 ñ m for al l these values of l and k .
For the Ùrst pa i r of the param eters thi s functi on is very cl ose to the characteri stic
functi on but is an analyti cal one. Thi s fact is im porta nt to exclude the hyp othesis

Fig. 3. Pseudo- ampl itu de A of the inciden t electric induction , taken as boundary con-

dition for the simulations presented in Fig. 4 and plotted as a function of the co-ordinate

w across the beam. Changing the parameters l and k one gets di˜erent shapes of (see

descripti on in the text). The three pairs of parameters and are chosen in such a way

that for every pair the full width of the beam is m. Even for the full line, w hich

lo oks like a step- function, is an analytical function.

Fig. 4. T he di˜racted w ave as a function of the co-ordinate along the exit sur-

face of the crystal. T he amplitud e w as obtained numerically using (34). T he three

lines corresp ond to the three boundary conditions taken (Fig. 3).
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tha t osci llati ons ari sing near the borders of the emi tted Ùeld d h (Fi g. 4) are caused
by nonconti nuous bounda ry condi ti ons.

The squared m odul e of the di ˜ra cted beam j d h j
2 as a functi on of the co-ordi -

nate x (Fi g. 1) on the exit surface of the crysta l is shown in Fi g. 4. The three l ines
correspond to the boundary condi ti ons ta ken for the simul ati ons (Fi g. 3). The two
peaks in the middl e of Fi g. 4 have di ˜erent heights depending on the bounda ry
condi ti on. The maxi m al value here is for the ful l line and m ini mal for the dotted
one. Thi s is due to the f act tha t d h depends on the bounda ry condi ti on l inearl y
and the area under the ful l l ine is greater tha n under the other l ines. Ho wever,
the structure of the border peaks in Fi g. 4 is much m ore com pl icated due to the
m ulti pl icati on of the two functi ons in the integ rand of (34). It is clear tha t the
emi tted Ùeld d h stro ngly depends on the boundary condi ti on and doing sim ulatio ns
for a given experim enta l set-up one should Ùrst m easure the pro Ùle of the inci dent
beam .

The scal ing of the co-ordi nate axi s f or a ll simul atio ns of d h i s determ ined
by A (the m axi mal value of A i s set to one but in a real experim ent thi s value
should be m easured). The functi on j d h j

2 of x for A havi ng a f orm very close to the
characteri sti c functi on (k = 0 : 0 2 ñ m) was sim ulated using (34) for three di ˜erent
values of l and is plotted in Fi g. 5: l = 1 ñ m (f ul l l ine), l = 2 ñ m (bro ken l ine)
and l = 4 ñ m (dotted line). From the values for the thi rd peak on the left side
of Fi g. 5: 0.001 (f ul l ), 0.004 (bro ken), and 0.014 (dotted) i t is seen tha t the l inear
appro xi m atio n (35) is val id for the ful l and broken l ines but not f or the dotted
one. The latter one is for the wi dth of sli t set to 8 : 0 4 ñ m in a section to pography
(the usual experim enta l wi dth of the sli t) and for thi s case or f or wi der sli ts (34)
should be appl ied.

Fig. 5. T he di˜racted w ave j d h j
2 as a function of the x co-ordinate on the exit surf ace

for di˜erent w idths of the inciden t beam: 2 m (f ull line), m (broken line), and

m (dotted line).
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5. Solu t io n f or a wi de b eam

In experim enta l arrangements where the incident beam is much wi der tha n
j B A j (Fi g. 1) so-cal led quasi-plane waves (often cal led in the X- ray jargon also sim -
pl y pl ane waves) are form ed. The Fouri er tra nsform analysis of beam s emi tted by
crysta ls conta ini ng random ly di stri buted m icrodefects can then be perf orm ed [7].
Fi rst, we consider the sim plest case when P i s in such a pl ace tha t al l of B A i s lyi ng
in the part of i l lum inated area where A = 1 . Co ntra ry to Sec. 4, the Â ˜ = ˜ À ˜ 0

i s trea ted as an independent variabl e (not set to zero) and the question is how the
Ùeld in P depends on Â ˜ . In thi s case f orm ula (32) for the Ùeld d 0 on the entra nce
crysta l surface ta kes the fol lowi ng form :

d 0 ( x ; 0 ) = exp[ À 2 ¤ iK cos( ˆ 0 )Â ˜ x 0] (36)

and form ul ae (30) and (31) are sti l l val id. Formul a (34) can be appl ied to Ùnd the
Ùeld in P but wi th two changes. Fi rstl y, the l im its in (34) are changed to ´

1
2 C 0 C h

,
because the l im its in (33) are now x À T ta n ˆ h (l ower) and x À T ta n ˆ 0 (upp er).
Secondly, the square-bra cketed term in the integ rand (coming from the bounda ry
condi ti on) m ust now be changed to the ri ght side of (36). Cha nging the vari able
in (34) as before we have for the Ùeld in P

d h (x ; T ) = À ibC 0 T exp f 2 ¤ iK C 0 Â ˜ [ x À

T

2
( ta n ˆ 0 + tan ˆ h )] g

Z 1

2 C
0

C
h

À
1

2 C
0

C
h

dy

È exp[ ´ 2 ¤ iK C 0 Â ˜ T sin (2 ˚ )y ] J 0 2
p

ab C 0 C h T
1

(2 C 0 C h ) 2 À y 2
; (37)

where the sign under the exponenti al functi on is positi ve i f the sign in (1) is
negati ve, and vi ce versa. T aki ng into account tha t a

À a
exp ( iu ) J 0 ( v

p

a 2 À x 2 ) dx =

2 ( a
p

u 2 + v 2 )
p

u 2 + v 2
[17], the integrati on in (37) can be done and one obta ins for d h

d h (x ; T ) = À i
C 0

C h

exp f 2 ¤ iK C 0 Â ˜ [x À

T

2
(ta n ˆ 0 + ta n ˆ h )] g

È

â h
p

â h â
h

sin
¤ K T C

p
â â

p

C 0 C

p

1 + r 2

p

1 + r 2
; (38)

where r = C 0

C

(2 ˚ ) Â ˜

C
p

â â
. Expressi on (38) wa s Ùrst deri ved from the TTE by

T akagi him self [5] and i t agrees wel l wi th the form ul a obta ined in the conventi onal
X- ray dyna m ical theo ry [4] assuming an inci dent beam in the form of an inÙni te
pl ane wa ve (no n-physi cal inci dent beam).

The real part of the di ˜ra cted am pl i tude d h was di rectl y obta ined from (37)
and pl otted as a functi on of Â ˜ in Fi g. 6. The curve in Fi g. 6 can also be obta ined
analyti cal ly using (38). The num erical resul ts from Fi g. 6 are com pared to the
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Fig. 6. T he real part of the pseudo-ampli tude of the di˜racted w ave Re ( d h ) as a func-

tion of Â ˜ . T he incident beam is so wide that a point P (Fig. 1) can be found for w hich

all of Û is lying in the part of the illu min ated area w here A = 1 . For this point the Ùeld

d w as obtained numerically using (37).

Fig. 7. T he test of the computer program used for simulations. The rocking curve

obtained numerically (dots) in Fig. 6 from (37) is compared to the results obtained

analyti call y using (38) (solid line).

analyti cal ones in Fi g. 7. Here, the num eri cal points (do ts) from a part of Fi g . 6
are shown on along wi th the analyti cal curve (sol id l ine) and it is clearl y seen tha t
the agreement is excel lent.

R eturni ng to the spati al dependence of in the case of a wi de inci dent
beam , Â wa s set again to zero. As shown above (f orm ula (37) or (38)), in the
case when is lyi ng in the part o f the i l lum inated area where the am pl itude of
the inci dent beam is constant, does not depend on the positi on . In thi s way,
for [ ta n ( ) + tan ( )] the squared m odul e of is the constant given
by (38). Cha nging the observati on point to the positi on for whi ch the curve BA
(Fi g. 1) is lyi ng partl y on the area of the nonconstant am pl i tude of the inci dent
beam (Fi g. 3), does depend on and can be obta ined num erical ly usi ng (37).
The dependence of on is shown in Fi g. 8. Here = 1 5 0 m and = 0 0 2 m
wa s used in the simul ati on; is a functi on of and as above. In the case when
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Fig. 8. T he dep endence of the di˜racted w ave j d h j
2 on the co-ordinate x (in ñ m) on

the exit surf ace; d h was obtained directly from (37).

the length of the constant area in Fi g. 8 is m uch greater tha n the lengths of the
oscil lato ry border parts, the emi tted wa ve d h i s usual ly cal led quasi-plane wave in
the X-ray appl icati ons.

6. D iscu ssio n

A careful descripti on of the m athem ati cal structure of the TTE was done
in Sec. 2. The connecti on of these equati ons wi th the wel l -known KG E gives the
possibi l i ty to use the m etho ds kno wn for the latter. The TTE in the form simi lar to
(8) or even in the form of an ell ipti cal di ˜erenti al equati on were investi gated long
ago by R ussian theo reti cians Indenb oom and Chukho vski i [17], however wi tho ut
ref erring to the KG E. The analyti cal expressions given in thi s work are val id for
an ideal crysta l but the same expressions, after changing the values of â h and â

h
,

are appl icable for a crysta l conta ining stati sti cal ly di stri buted m icrodefects in the
zeroth order of perturba ti on calcul ati ons. The mathem ati cal form al ism presented
here can be di rectl y used to obta in higher term s of the perturba ti on calcul ati ons [8]
for a noni deal crysta l .

The appl icati on of externa l di ˜erenti al form s in Sec. 3 gives a very cl ear way
to obta in soluti ons of TTE. It is especial ly importa nt f or consi derati ons connected
wi th di ˜ra cti on in the Bra gg geometry [4] (no t presented here), whi ch is much m ore
compl icated tha n the calcul ati ons in the Laue geom etry . Using externa l di ˜erenti al
form s one can very easily get an integ ra l equati on whi ch is to be solved in the Bra gg
case. However, the soluti on of thi s integra l equati on is not stra ightf orwa rd and wi l l
be presented elsewhere.

Formul a (35) for secti on to pography wa s Ùrst obta ined by Ka to [14, 15]
usi ng the fol lowi ng considerati on. A spheri cal wave was constructed from plane
wa ves (F ouri er tra nsform ) and thi s spheri cal wa ve was assumed to be fal l ing on a
crysta l . For each pl ane-wa ve com ponent of the spheri cal wave, the di ˜ra cted wa ve
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wa s obta ined using the conv enti onal X-ray dyna m ical theo ry as given by (38).
Next, the soluti ons (38) were added (i .e. the Fouri er tra nsform was perf orm ed) to
get expression (35) but wi tho ut the term ¯ and wi tho ut the dependence on the
bounda ry condi ti on.

The point of vi ew presented in the present wo rk is qui te di ˜erent: the TTE
are solved for a narro w inci dent beam and expression (34) is obta ined. Formula (34)
depends on the bounda ry condi ti on and the wi dth of the slit. In the l imi t of a very
narro w sli t (and setti ng A = 1 ) form ula (35), given by Kato , is obta ined. Sim i lar
considerati ons were presented by T akagi [5] (wi tho ut the dependence on bounda ry
condi ti on) and they were also mentio ned in Pinsker' s m onograph [17]. These two
qui te di ˜erent points of vi ew can probably be expl ained as fol lows. In section
to pography the inci dent beam is very narro w (but not a spheri cal beam ) and using
the conventi onal theo ry one should perf orm i ts Fouri er tra nsform . Pro babl y the
soluti ons of TTE for these two di ˜erent Fouri er tra nsform s are sim i lar and in the
l im iti ng case expression (35) is val id for both these descripti ons. The dependence of
these soluti ons on the Fouri er tra nsform used were analysed in [13]. The descripti on
based on the TTE presented in thi s wo rk is m uch clearer tha n the one inv olvi ng
calculati ons wi thi n the conven ti onal theo ry .

Al so, the Green functi ons for the TTE [18, 19] can be easily derived f rom
the soluti ons presented in thi s work.

7. Co n cl usion s

The soluti ons of the TTE in the Laue case based on the externa l di ˜erenti al
form s and the Stokes theorem were obta ined. A careful analysis of the soluti ons
for a narro w and a wi de inci dent beams is presented to describe exp erimenta l
m etho ds appl ied in X- ray inv estigati ons. The im porta nce of the state of coherence
of the fal l ing beam is stressed. The m etho ds presented in thi s work wi l l be appl ied
for a descripti on of X- ray di ˜ra cti on in the Bra gg case and for higher orders of
perturba ti on calcul ati ons for crysta l conta ining m icrodefects.
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