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The Takagi—Taupin equations, the fundamental equations for X-ray
diffraction deduced from the Maxwell equations, are considered. The connec-
tion between the Takagi—Taupin equations and the Klein—-Gordon equation
is shown. A method of solution of these equations using external differential
form formalism is proposed. The solutions for both a narrow and a wide in-
cident beams as a function of boundary conditions is analyzed. The so-called
spherical and quasi-plane waves used in the X-ray experimental methods are
derived from.
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1. Introduction

In the present paper the Klein-Gordon formulation of the Takagi—Taupin
equations (TTE) is described. The TTE, having the form of a set of two partial
differential equations for two independent functions, have been derived by Takagi
and Taupin [1, 2] for the electromagnetic fields in crystals from the Maxwell equa-
tions. The TTE are partial differential equations of the hyperbolic type. These
equations can be converted to the Klein—-Gordon equation (KGE) [3] describing
the scalar field with a mass in relativistic quantum field theory. Naturally solu-
tions of the KGE are well known and for this reason solutions of the TTE in the
Laue [4] geometry have been presented earlier [5]. However, the present way of ob-
taining these solutions is very convenient for further applications for two reasons.
Firstly, the use of external differential forms formalism and the generalized Stokes
theorem [6] make the derivation of solutions clearer. This is very useful in the
Laue case and even more in the Bragg case [4], where the mixed boundary condi-
tions make the solutions much more complicated. Secondly, the formulation in the
Klein—-Gordon form gives the possibility to use the very well-known mathematical
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methods connected with the KGE. This is very useful for a description of diffuse
scattering caused by microdefects [7], where their presence requires perturbation
calculations [8]. The formulae presented in this work are valid for ideal crystals
but the same formulae can give solutions for nonideal crystals in the zeroth order
of perturbation calculations [9]. One cannot further reduce the amount of math-
ematical formulae, because this could lead to a loss of mathematical clarity, but
all these formulae are quite simple and straightforward. On the other hand, the
full final formulae used for the simulations are given below and can be directly
applied, e.g. in the Mathematica computer package.

The solution of the TTE for both a narrow and wide incident beam are
carefully analyzed in this work. Narrow beams are commonly used in the section
topography experiments [10-12]. Their description based on the conventional X-ray
dynamical theory [14, 15] is compared to the appropriate solutions of the TTE.
Formation of the so-called quasi-plane wave on the base of solution of the TTE is
also presented. This type of solutions (quasi-plane waves) are commonly used in
investigations of microdefects [7] and for many other problems.

2. Takagi—Taupin equations

Let us consider the diffraction of an X-ray beam by a crystal of parallelepiped
shape. For a given reflection vector h, which is orthogonal to the reflecting atomic
planes, the following two complex vectors kg and ky,, with k;, = ko + h, are defined.

e The real parts of these vectors are lying in the plane formed by h and the
wave vector K, of the incident beam. This plane is usually called the diffrac-
tion plane (plane of Fig. 1).

e The vectors ky and k; make the Bragg angle g with the reflecting planes,
and |ko| = |ka] = 22[14 fRe(x0)], K = |K.| = % = {, where vy is the
frequency of the incident wave, ¢ — the velocity of light in the vacuum,
yo — the zeroth Fourier coefficient of the electric susceptibility of the crys-
tal, and A — the wavelength of the incident beam. The direction of kg

corresponds to the Bragg maximum in the kinematical diffraction theory [4].

e The imaginary parts ky of kg and kj, are equal and defined as follows: |ki| =
vo [Im(xo)], kr 1s parallel to the reflecting planes.

c 2cosfp’

Two co-ordinate systems (#, z) and (u, v), are used in the calculations (Fig. 1).
The z-axis is lying in the entrance surface of the crystal and the z-axis is orthogo-
nal to it. The directions of the u- and v-axes are parallel to the directions of Re[kg]
and Re[ky], respectively (u and v are usually denoted by sy and sp, respectively).
Simple geometric considerations give the following transformation between (z, z)

and (u,v):

() =+ (& ) (2) (1)
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where S; :=sin(¥; ), C; :=cos(¥;), j =0, h. The direction of the z-axis is chosen
in such a way that always ¥y > 0. The sign in (1) is to be taken positive when
Wy > W, and negative otherwise.

The electric induction field in the crystal, as well as in the incident beam,
is split into two polarization components, orthogonal to the diffraction plane and
parallel to it. The differential equations for these two states of polarization differ
only by a constant C' (C' is usually called a polarization factor for the amplitude)
[1, 2, 4]. The further considerations are given for a fixed polarization state, so the
electric field is described by a scalar function.

The incident beam 1s given by the following formula:

D.(r) = A(r)exp(—27iK, - 7) (2)
with A(r) being its pseudo-amplitude.

The electric induction field, to be calculated in the crystal in the two-wave
approximation [2, 4], is sought in the following form:

d(r) = do(r) exp(—2miky - ) + dpn(r) exp(—27iky, - 7), (3)
where the pseudo-amplitudes d;(7) are slowly-varying functions, in contrast to the
highly oscillating exponential terms. The Maxwell equations are applied to find the
pseudo-amplitudes d; (7) but in the X-ray range some terms may be neglected and
the final form of the differential equations is quite specific. Takagi’s considerations
lead to the following form of differential equations for the pseudo-amplitudes d; ()
in the ideal crystal:

60d0 = —iadh, 6hdh = —ibdo, (4)
where 0; := Igjiﬁl ((,f—x, %) , a = KUy, b= mKCxp, and x5, x7 — the Fourier

coefficients of the electric susceptibility of the crystal.
Changing variables in the TTE (4) and introducing new symbols ¢, and @,
for the pseudo-amplitudes

do(z, 2) = @y (u(z, 2), v(x, 2)), dn(z,2) = Py (ulx, 2), v(x, 2)), (5)
where u(z,z) and v(z, z) are given by (1), one gets

OuPy = —iad,, (6a)

Oy @y = —1bPy,, (6b)
where 0, = %, o = u, v. Going from the linear set (6) of differential equations
to the second order differential equation for @, or @, and setting

P(u,v) = Wu+v,u—v)=W(,y), (7)
where @ is @, or @, the KGE [3]

(07 — 97 + ab)W =0 (8)

for function W 1s derived. In this way, both @, and @, are obtained by solving the
same KGE (8). The explicit formulae for ¢, and @, differ only, because different
boundary conditions have to be used for these fields.
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3. Solutions for the Laue geometry

In the Laue geometry the incident beam is falling on one surface of the
parallelepiped crystal (Fig. 1) and the diffracted beam, propagating along the
v-axis, is emitted from the opposite surface (the lower side in Fig. 1). The electric
induction of the incident beam is assumed to have the following form:

D.(r) = A(w) exp(—27i K, - r), (9)
where w is co-ordinate across the beam (Fig. 2). In order to simulate the usually
experimental conditions, the function A(w) is taken in the following form:

Alw) = fe(w—1-k), (10)

where for positive arguments x

0 x> 1+k,
foi(z) =< exp [—k%_x(;xl%] , I<e<l+k, (11)
1 x <,

bl

and f(—z) := f(x). This is an analytical function with connected support [6]. In
the case when k < [ this function i1s very close to the non-smooth characteris-
tic function (the step function) of the area [0,2[ 4+ 2k] but for all values of the
parameters [ and k it is analytical.

‘f\lBeam

b4

Fig. 1. Geometry of diffraction. The X-ray beam (shadow area) is falling on the crystal
(rectangle) along the K. direction. The fields inside the investigated crystal are obtained
using the co-ordinates (¢, z) and (u,v). For a given point P the curve v is lying on the
entrance surface S of the crystal between the characteristic lines (71 and v2) parallel to
the u and v directions, respectively, and meeting in P. The fields in the point P depend
linearly on the field of the incident beam on the curve 4. If P takes such a place that
all of v is lying outside the illuminated (shadowed) area then the field in P vanishes.

It follows from the Maxwell equations the continuity of the electric induc-
tion D on the entrance surface: the D component normal to the surface is contin-
uous but for X-ray radiation the refraction coefficient is very close to unity so that
also the tangential component of the induction is to a very good approximation
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Fig. 2. Geometry of the boundary condition (12). The X-ray beam bounded in space
(shadowed area) is falling on the crystal of Fig. 1. The electric induction field of the
incident beam is given by the analytical function A of the co-ordinate w across the
beam (Fig. 3). The crystal can be rotated around O (the left edge of the illuminated
area). The point O has co-ordinate =z = 0 for any value of the rotation angle « but the

¢ co-ordinate of the right boundary (point P) depends on «.

continuous. Comparing (2) to (3) on the entrance surface S(z = 0) and taking into
account that |ko| = [K.|(1+ $|xo|) one gets

D). (r)exp[2miK cos(¥o)(or — ag)x] — do(x,0)
= dn(x,0) exp(—2mih - 7), (12)

where ag = %|X0| tan ¥y, and « is the angle of rotation of the crystal along a line
orthogonal to the plane of Fig. 2 and going through O. The left side of (12) is a
slowly varying function of & for small values of @ — ap. On the contrary, the right
side of (12) contains the highly oscillatory term exp(—2=ih - 7). For this reason
formula (12) can be fulfilled only when both sides of (12) vanish. In this way, from
the Maxwell equations alone, the boundary conditions for the TTE are

do(x,0) = Alz cos(Wy — )] exp[27iK cos(Wo) (e — an)x] (13)
and

dp(2,0) = 0. (14)
From (6a), (13), and (14) it follows:

OuPus =0 (15)
and

Dy)s = do(x,0). (16)
Equations (13), (14), and (6b) give the boundary conditions for @,

Dy =0 (17)
and

Oy Py|s = —ibdo(x,0). (18)

From (6) it follows that @, as well as @, fulfil the same differential equation
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(80, + ab)® = 0, (19)

which is to be solved under boundary conditions (15) and (16) for the field ¢, or
(17) and (18) for the field @,. In order to find the fields @ in every point P lying
in the crystal or on its exit surface (Fig. 1) the following function Rp is defined:

Rp(u,v) = Jo[2Vaby/(up — u)(vp — v)], (20)
where (up,vp) stands for co-ordinates of the point P. For a given P the area of

the triangle PBA is considered. The line AP (or 71) is parallel to the u-direction
and PB (or 72) — to the v-direction. For every point (u,v) within the triangle

PBA the value of (up —u)(vp —v) under square root in (20) is positive. It may be
verified that the function defined in (20) satisfies (19) and the boundary conditions

0uRply, =0, Oy Rply, =0. (21)
In order to find ¢, and &, in P two external differential forms [6] are defined

2, .= =(RpOy®y)du — (9,9, Rp)dv (22)
and

2, .= ($,0uRp)du+ (Rp0,®y)dv. (23)
From the definitions and the fact that (8,0, + ab)Rp = 0 it follows that the
external derivative [6] for both these forms vanishes

df2 =0. (24)
Applying the Stokes theorem stating the integral of the external derivative of a

differential form over a given area is equal to the integral of this form over the
boundary of this area, i.e.

0:/ d[):/ 02 (25)
PBA Y1Uy2Uvys

and involving Eqgs. (21) one gets

—/ (0u@y)du — /[(Rp@u@u)du + (Py 0y Rp)dv] =0 (26)
and
/ (0yPy)dv + /[(@vﬁuRp)du + (Rp0y®y)dv] = 0, (27)

where vy is oriented curve from B to A (Fig. 1). Taking into account that
f%(ﬁu@u)du =@y (ua,va) — Py(up,vp) and using (6), from (26) one gets

@u(uP,Up) = @u(uA,vA) - /(@uava)dv (28)

In the same way the following expression for the field @, is obtained:

@v(uP,vp) = @v(uB,vB) - / leP@udU (29)
Y
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From (26) and (27) it follows that if for a given point P the curve 7 is lying on
the non-illuminated area of the entrance crystal surface then the fields @ vanish
in P. This is a general feature of partial differential equations of the hyperbolic
type: the fields propagate only between characteristic lines.

4. Solutions for a small width of the incident beam

The case when the width of the incident beam is much smaller than the
length |BA| of ¥ (Fig. 1) is common in section topography arrangements [10-12].
From (1) it follows that the dependence of the co-ordinates (u, v) on the # (Fig. 1)
for v has the form:

yid3 et = (1) =t (00 (30

(22 = ey (S %)

Setting in (13) o = ap (the dependence of dj, on the & was analysed in [13]) we

and

have for dy on the entrance surface

do(z',0) = Az’ cos(Wy — ag)] (32)
for 2’ € [0, €] and 0 outside this region, where ¢ = %E—ﬁ% Applying (30), (31),
and (32) to (29) and then using (5), one gets the expression for dj
dy(2,T) = _ip—Co / da’ Jo(2Vab/q) { Ale’ cos(Wy — ag)]}, (33)
sin(260B) Jy
where ¢ = (up —u)(vp —v) is a function of 2’ given by (31). Changing the variable
in (33) to y = 2C;Ch —+ x_TTSEEI(l;Z;xI, where ¥; = ¥, for plus in (1) and &#; = ¥

for minus in (1), one gets

Y1- Tameeg)
dp(2,T) = ibCoT/ dyJo | 2V abT/CyCh 71 —y?
” (2C,Cp)?

x { A2’ cos(Wo — a0)I}H =iy (34)
where y; = ZCiCh + xT_siTnt(;I;}f; . In the limiting case when ¢ 1s very small, the integral
in (33) can be changed to m——=5— multiplied by the value of the integrand in

T sin(26B)
and the approximate formula takes the following form:

ECQ 2\/ abT 52
- TJy - =1,
sin(26p) VCCh L2

where s = z — %(tan Uy+tanWy), L = %%209_52 In order to obtain (35) A(y;) =1

dy(z,T) = —ib

(35)
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was set. The limiting formula (35) was first obtained by Kato [14, 15] using quite
different considerations, and then by Takagi [5]. Both not contain the factor e
describing the dependence of the emitted field on the width of the incident beam.
The presence of factor ¢ in (35) expresses the energy conservation law in the
case of a fully coherent incident beam: the total energy of the incident beam
is proportional to ¢? and the emitted beams must transport all this energy. The
dependency of dj on € in (35) can be used to investigate a degree of coherence of the
incident beam because for the incoherent or partly coherent beam the dependence
on € in (35) will take another form [16].

Formula (34) was directly applied to obtain the diffracted amplitude dp, for
a silicon crystal set for the reflection h = [333], g = 19.84°. For the surface
orientation m = [110] (n being external normal vector to the entrance surface of
the crystal) the values of the angles ¥ are: ¥y = 55.1°, ¥, = 15.4°. The thickness
of the crystal was taken as T'= 270 pym, C' = 1 and the wavelength was taken for
the Cu K,, radiation. The function A for { = 20 gm and k = 0.02 pm (full line),
[ =15.02 pm and k£ = 5 pm (broken line), [ = 5.02 ym and k¥ = 15 pm (dotted
line) taken as input condition (32) is presented in Fig. 3. The full width of the
incident beam is taken to be equal to 40.04 pm for all these values of [ and k.
For the first pair of the parameters this function is very close to the characteristic
function but is an analytical one. This fact is important to exclude the hypothesis

1 77 vl
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Fig. 3 %, pm Fig. 4 ¥ A

Fig. 3. Pseudo-amplitude A of the incident electric induction, taken as boundary con-
dition for the simulations presented in Fig. 4 and plotted as a function of the co-ordinate
w across the beam. Changing the parameters [ and k one gets different shapes of A (see
description in the text). The three pairs of parameters [ and k are chosen in such a way
that for every pair the full width of the beam is 40.04 gm. Even for the full line, which
looks like a step-function, A is an analytical function.

Fig. 4. The diffracted wave |di|? as a function of the = co-ordinate along the exit sur-
face of the crystal. The amplitude dn was obtained numerically using (34). The three

lines correspond to the three boundary conditions taken (Fig. 3).
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that oscillations arising near the borders of the emitted field dj, (Fig. 4) are caused
by noncontinuous boundary conditions.

The squared module of the diffracted beam |dp|? as a function of the co-ordi-
nate x (Fig. 1) on the exit surface of the crystal is shown in Fig. 4. The three lines
correspond to the boundary conditions taken for the simulations (Fig. 3). The two
peaks in the middle of Fig. 4 have different heights depending on the boundary
condition. The maximal value here is for the full line and minimal for the dotted
one. This is due to the fact that dp depends on the boundary condition linearly
and the area under the full line is greater than under the other lines. However,
the structure of the border peaks in Fig. 4 i1s much more complicated due to the
multiplication of the two functions in the integrand of (34). It is clear that the
emitted field dj strongly depends on the boundary condition and doing simulations
for a given experimental set-up one should first measure the profile of the incident
beam.

The scaling of the co-ordinate axis for all simulations of d; is determined
by A (the maximal value of A is set to one but in a real experiment this value
should be measured). The function |dy|? of z for A having a form very close to the
characteristic function (k = 0.02 pm) was simulated using (34) for three different
values of { and is plotted in Fig. 5: / = 1 pym (full line), { = 2 pm (broken line)
and { = 4 pm (dotted line). From the values for the third peak on the left side
of Fig. 5: 0.001 (full), 0.004 (broken), and 0.014 (dotted) it is seen that the linear
approximation (35) is valid for the full and broken lines but not for the dotted
one. The latter one is for the width of slit set to 8.04 ym in a section topography
(the usual experimental width of the slit) and for this case or for wider slits (34)
should be applied.

L0125 Lo Al

| dn (%) |7

.01

.0075

.005

.0025

100 300 400

X, MM

Fig. 5. The diffracted wave |dp|? as a function of the ¢ co-ordinate on the exit surface
for different widths of the incident beam: 2.04 pm (full line), 4.04 pm (broken line), and
8.04 pm (dotted line).



776 J. Borowskt

5. Solution for a wide beam

In experimental arrangements where the incident beam is much wider than
|BA| (Fig. 1) so-called quasi-plane waves (often called in the X-ray jargon also sim-
ply plane waves) are formed. The Fourier transform analysis of beams emitted by
crystals containing randomly distributed microdefects can then be performed [7].
First, we consider the simplest case when P is in such a place that all of BA is lying
in the part of illuminated area where A = 1. Contrary to Sec. 4, the Ao = o — ag
is treated as an independent variable (not set to zero) and the question is how the
field in P depends on Aa. In this case formula (32) for the field dy on the entrance
crystal surface takes the following form:

do(z,0) = exp[—27iK cos(¥y)Aaa'] (36)
and formulae (30) and (31) are still valid. Formula (34) can be applied to find the

field in P but with two changes. Firstly, the limits in (34) are changed to :Fm,
because the limits in (33) are now # — T'tan ¥y, (lower) and # — T'tan ¥, (upper).

(
(

coming from the boundary

36). Changing the variable

Secondly, the square-bracketed term in the integrand
condition) must now be changed to the right side of

n (34) as before we have for the field in P

dp(2,T) = —ibCyT exp{2mi K CoAafr — %(tan@o + tan ¥) }/2CUCh y

2CoCh,

1

(2C,CR)2 —y? )’ (37

x exp[F2mi K CoAaT sin(208)y]Jo (2\/% CoCyT

where the sign under the exponential function is positive if the sign in (1) is

negative, and vice versa. Taking into account that [ exp (iu)Jo(vVa2 — 2?)dz =

2%2 [17], the integration in (37) can be done and one obtains for dj

dp(2,T) = —iy/ % exp{27iKCyAalz — %(tan Uy + tan )]}
h

TKTC /XEXT 2)
Yh sm( o V1+r

X bl
VX XE V14r?
where r = ’/Ch %\i—ffh_%. Expression (38) was first derived from the TTE by
h

Takagi himself [5] and it agrees well with the formula obtained in the conventional

(38)

X-ray dynamlcal theory [4] assuming an incident beam in the form of an infinite
plane wave (non-physical incident beam).

The real part of the diffracted amplitude dj was directly obtained from (37)
and plotted as a function of A« in Fig. 6. The curve in Fig. 6 can also be obtained
analytically using (38). The numerical results from Fig. 6 are compared to the
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Fig. 6. The real part of the pseudo-amplitude of the diffracted wave Re(dy) as a func-
tion of Aa. The incident beam is so wide that a point P (Fig. 1) can be found for which
all of v is lying in the part of the illuminated area where A = 1. For this point the field

dn was obtained numerically using (37).

®
o .4
o]
(]

A, arc sec

Fig. 7. The test of the computer program used for simulations. The rocking curve
obtained numerically (dots) in Fig. 6 from (37) is compared to the results obtained

analytically using (38) (solid line).

analytical ones in Fig. 7. Here, the numerical points (dots) from a part of Fig. 6
are shown on along with the analytical curve (solid line) and it is clearly seen that
the agreement is excellent.

Returning to the spatial dependence of dp in the case of a wide incident
beam, A« was set again to zero. As shown above (formula (37) or (38)), in the
case when 7 is lying in the part of the illuminated area where the amplitude of
the incident beam is constant, |ds| does not depend on the position «. In this way,
for & € [T'tan(¥y), € + 1" tan(¥y)] the squared module of dj is the constant given
by (38). Changing the observation point P to the position for which the curve BA
(Fig. 1) is lying partly on the area of the nonconstant amplitude of the incident
beam (Fig. 3), |ds| does depend on  and can be obtained numerically using (37).
The dependence of |dy]? on x is shown in Fig. 8. Here { = 150 ym and k = 0.02 ym
was used in the simulation; € is a function of [ and & as above. In the case when
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Fig. 8. The dependence of the diffracted wave |d|* on the co-ordinate = (in pm) on

the exit surface; dj was obtained directly from (37).

the length of the constant area in Fig. 8 is much greater than the lengths of the
oscillatory border parts, the emitted wave dp is usually called quasi-plane wave in
the X-ray applications.

6. Discussion

A careful description of the mathematical structure of the TTE was done
in Sec. 2. The connection of these equations with the well-known KGE gives the
possibility to use the methods known for the latter. The TTE in the form similar to
(8) or even in the form of an elliptical differential equation were investigated long
ago by Russian theoreticians Indenboom and Chukhovskii [17], however without
referring to the KGE. The analytical expressions given in this work are valid for
an ideal crystal but the same expressions, after changing the values of x,, and x7,
are applicable for a crystal containing statistically distributed microdefects in the
zeroth order of perturbation calculations. The mathematical formalism presented
here can be directly used to obtain higher terms of the perturbation calculations [8]
for a nonideal crystal.

The application of external differential forms in Sec. 3 gives a very clear way
to obtain solutions of TTE. It is especially important for considerations connected
with diffraction in the Bragg geometry [4] (not presented here), which is much more
complicated than the calculations in the Laue geometry. Using external differential
forms one can very easily get an integral equation which is to be solved in the Bragg
case. However, the solution of this integral equation is not straightforward and will
be presented elsewhere.

Formula (35) for section topography was first obtained by Kato [14, 15]
using the following consideration. A spherical wave was constructed from plane
waves (Fourier transform) and this spherical wave was assumed to be falling on a
crystal. For each plane-wave component of the spherical wave, the diffracted wave
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was obtained using the conventional X-ray dynamical theory as given by (38).
Next, the solutions (38) were added (i.e. the Fourier transform was performed) to
get expression (35) but without the term ¢ and without the dependence on the
boundary condition.

The point of view presented in the present work is quite different: the TTE
are solved for a narrow incident beam and expression (34) is obtained. Formula (34)
depends on the boundary condition and the width of the slit. In the limit of a very
narrow slit (and setting A = 1) formula (35), given by Kato, is obtained. Similar
considerations were presented by Takagi [5] (without the dependence on boundary
condition) and they were also mentioned in Pinsker’s monograph [17]. These two
quite different points of view can probably be explained as follows. In section
topography the incident beam is very narrow (but not a spherical beam) and using
the conventional theory one should perform its Fourier transform. Probably the
solutions of TTE for these two different Fourier transforms are similar and in the
limiting case expression (35) is valid for both these descriptions. The dependence of
these solutions on the Fourier transform used were analysed in [13]. The description
based on the TTE presented in this work is much clearer than the one involving
calculations within the conventional theory.

Also, the Green functions for the TTE [18, 19] can be easily derived from
the solutions presented in this work.

7. Conclusions

The solutions of the TTE in the Laue case based on the external differential
forms and the Stokes theorem were obtained. A careful analysis of the solutions
for a narrow and a wide incident beams is presented to describe experimental
methods applied in X-ray investigations. The importance of the state of coherence
of the falling beam is stressed. The methods presented in this work will be applied
for a description of X-ray diffraction in the Bragg case and for higher orders of
perturbation calculations for crystal containing microdefects.
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