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Th e com plement ar it y of synchrotron deri ved ultrahi gh resolution X -ray

and neutron protein crystallograp hy is explored via an ensemble of plant
lectin concana valin A crystal structures . T hus a resume of a study of a cryo
0.94 ¡A and a neutron (+ X -ray ) protein crystal 2.4 ¡A structure at room tem-
p erature is made and these are then compared in their e£ciency to determine

the positio ns of the bound solvent atoms i.e. as hydrogens or deuteriums.
First results are also presented of comparisons of t w o ultrahigh resolutio n
protein crystal structures , the 0. 94 ¡A and a new 0. 92 ¡A structure. Thus the

variabili ty of the tw o cryo structures, at very Ùne detail, is describ ed; this
variabili ty is in the multiple occupancies of side chains. Overall, one can see
that a \complete " structure deÙniti on, w ith to day ' s experimental capabili -

ties, is possibl e and can inclu de structure ensemble variations.

PAC S numb ers: 87.64. {t, 87.15.{v, 61.12. { q

1. I n t rod uct io n

In protei n crysta l lography to day the deÙniti on of a pro tei n str ucture can
be in a com plete form . Thus other structura l scienti sts can have access, in qui te
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a numb er of cases to day, to a structure at i ts m ost deta i led, i .e. ul tra hi gh reso-
luti on. Thi s generally means harnessing cryo- temperature. I personal ly do won-
der however about the vari ati on of structure from physi ological tem perature to
cryo -tem perature, not least as thi s crosses the wel l kno wn glass tra nsiti on [1] at
¤ 1 8 0 K, and where functi on is lost. Mo reover, hydro gen ato ms deta ils can sti l l be
m issing in an ul tra high resoluti on pro tei n crysta l structure due to part mobi li t y
of these ato m s. Neutro n protei n crysta l lography al lows much im pro ved deÙni-
ti on of hydro gen positi ons, as deuteri um s, since the neutro n scatteri ng factor for
deuteri um m atches carb on, ni tro gen, and oxyg en. Hence the neutro n appro ach to l-
erates the parti al m obi li t y pro blem better tha n X- rays, and even 2.5 ¡A resoluti on
neutro n structures o˜er deuteri um ato m positi on detai ls. (Obvi ously ful ly m obi le
ato m s cannot be determ ined by any di ˜ra cti on techni que.) The bound water deu-
teri um s are a who le cl ass of ato m s tha t are generally m issing from X-ray protei n
crysta l structures. Neutro ns are also non-destructi ve as an exp erimenta l probe so
radi ati on damage is not a lim i tatio n as it rea l ly can be wi th X- rays. W e Ùnd our-
selves deÙning the compl ete protei n structure then as needing to be relevant to
physi ological tem perature but as detai led as possible. Ideal ly, one can foresee the
need for an X- ray structure at both cryo and ro om tem perature and a neutro n
structure of the deutera ted form , whi ch can be at room tem perature. Thus, at least
wi th one protei n structure, concanaval in A, our Structura l Chemistry Laborato ry
in Ma nchester has steadi ly pro vi ded an ensembleof structures to \ deÙne" thi s pro-
tei n. Concanaval in A is of interest on tw o pri nci pa l counts. Fi rstl y, biologically , as
a sacchari de bi ndi ng pro tei n i t is im pl icated in cell to cell cross l inki ng. Secondl y,
bi ophysi cal ly, i t is extensi vely used as a test system for characteri sati on of l igand
bi ndi ng and m olecular recogni ti on studi es. It is the most extensi vel y studi ed of
the plant lecti ns. Caref ul structura l deÙniti on is theref ore wo rthwhil e.

2. E x per i m ent s

Hi ghly resolved crysta l structure s of protei n m olecul es can be obta ined now
usi ng X- ray crysta l lographi c data m easured at synchro tro n radiati on sources wi th
hi gh perf orm ance detecto rs and cryo protected sampl es. D etai ls of the m obi l it y of
the ato ms is also avai lable from thei r \ therm al parameters" in the reÙned m olec-
ul ar model. In thi s way, we have now studi ed the protei n to 0.94 ¡A resoluti on [2].
The ease of exchange of parti cul ar proto ns for deuteri um has then been studi ed
usi ng neutro n La ue di ˜ra cti on data m easured at the ILL in Grenobl e [3]. In ad-
di ti on we have determ ined the D 2 O bound solvent structure of concanaval in A
usi ng a combined Cu K alpha X-ray reÙnement at 1.8 ¡A and neutro n at 2.4 ¡A
reÙnement appro ach, and then com pared the results wi th the bound solvent in the
0.94 ¡A SR X- ray structure [4], T able I. Fi nal ly, m ost recentl y, we have determ ined
another ul tra hi gh resoluti on concanaval in A (the Mn, Ca sacchari de free form ) at
0.92 ¡A resoluti on [5].
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3. R esul t s

Ma ny m ore bound water m olecule deuteri um s can be located vi a neutro n
pro tei n crysta l lography (\ n+X" appro ach) rather tha n the ul tra high resoluti on
X- ray appro ach alone. However the latter does deliver a few very detai led wa -
ter molecule hydro gen ato m s (see Tabl e I), as well as i ts hi ghly deta i led overal l
structure. The two appro aches are thus com plementa ry.

TA BL E I

Bound w ater comparison: 2.4 ¡A resolutio n neutron (+ X - ray) versus 0. 94 ¡A SR X -ray
cryo- temp erature (f rom Ref . [4]).

Temp erature Technique Total w aters C ommon b ound D 2 O DO H 2 O H O

[K ] w aters to each

293 \n+ X " 148 62 20

88

100 SR X -ray 319 12 35

T ABLE I I

Protein structure variations betw een room and cryo temp eratures (f rom Ref. [5] and
to be publish ed) seen in terms of the n umber of mu lt i ple occupanc y si de chai n cases

(the remaining parts of the w hole protein structure remainin g essentially the same,
within their resp ective protein structure precisions).

C ase C ommon Total

(i) cryo to cryo 0.94 ¡A \native" 0.92 ¡A Mn, C a 22 42

concana vali n A 25 concana valin A 39

(ii) room 1. 7 ¡A Mn, C a 1.6 ¡A C o,C a 4 6

versus ro om concana valin A 5 concana valin A 5

temp erature

(iii) ro om 1. 7 ¡A Mn, C a 0.92 ¡A Mn, C a 3 42

versus cryo concana valin A 5 concana valin A 39

There are di ˜erences between, and wi thi n, these cryo and room tem perature
pro tei n structure s; they represent an ensembl e of experim ental reÙned structures
of concanaval in A [5]. There are variati ons apparent in structure between the cryo
and room tem peratures, and wi thi n a temperature (see T abl e I I).

4 . F ur t h er devel opm ent s

(i ) Room tem perature pro tei n structure deÙniti on is importa nt because thi s
is closer to physi ological tem perature, but how to im pro ve the resoluti on obta in-
abl e wi th X- rays? The study and characteri sati on of pro tei n crysta l perfection has
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revealed tha t the m osaicity of crysta ls at room tem perature is even at the arc
second v alue. Hence the stri ct col l imatio n of undul ato r X- rays o˜ers an impro ved
m easurement physi cs of ul tra Ùne-phi -slicing f or data col lection. Hence, by wo rk-
ing wi th lower SR intensi ti es, i.e. unf ocussed, but near-pl ane wa ve, the signal to
background can be enhanced, the weak data measured more accuratel y and the
resoluti on l im it perhaps extended. W ork to thi s end is underwa y pri nci pal ly by
Snel l, Borgstahl and Bel lamy using SSRL, Sta nford. Mo reover, m icrogravi t y pro-
vi des a m edium for convecti on free growth of large crysta ls f or whi ch impro ved
perfecti on can be achi eved [6].

(i i ) T o wi den the appl icabi l i t y of neutro n pro tei n crysta llography , the ex-
tensi on of neutro n data col lection metho ds to encompass yet larger uni t cells is
im porta nt. In Ma nchester, using the ILL LAD I in Grenoble, we have pro bed thi s
techni cal fronti er. We have shown we can currentl y record neutro n data , using
large crysta ls (appro xi m atel y 3 m m in size), on the cubi c concanaval in A wi th
bound glucoside (space group I 2 1 3 ; a = 1 6 8 ¡A) to ¤ 3 : 5 ¡A [7]. In order to reach
3.0 ¡A or better resoluti on, im pro ved m easuri ng techni ques are needed. One way,
being expl ored by Bl akeley and Myl es, is to freeze the protei n. Thi s is chal leng-
ing for large crysta ls whi lst preservi ng thei r perf ection (keepi ng the m osaicit y to
a reasonable value for data col lection) but a cryo neutro n data set on the stan-
dard concanaval in A crysta l f orm has been achi eved recentl y at the ILL LAD I
instrum ent in Grenobl e. In another appro ach, ti m e-of -Ûight Laue di ˜ra cti on is an
attra cti ve m etho d as the signal to noise can be im pro ved, but is yet to be brought
to frui ti on [8]. The pro to n synchro tro n spal lati on \ short pulse" typ eneutro n source
(SNS) such as ISIS @ 160 kW , especially the proposed cold ta rget stati on 2, and
then the upcom ing USA 's SNS (@ 2 MW ) and the Japanese spal lati on neutro n
pro ject, wi l l each allow the ti m e-of-Ûight La ue appro ach to be uti l ised and at an
increasing source power level. In the l im it of the proposed ESS @ 5MW , wi th the
short pul se ta rget stati on, a facto r of up to appro xi m atel y 30 gain in \ signal to
background" capabi l ity would be avai labl eover ISIS and 1 0 È ILL LAD I [9]. Thus,
m ajor stri des can be made to address tw o f undam enta l l im its of neutro n protei n
crysta l lography at present. Fi rstl y, smal ler protei n crysta ls could be harnessed e.g.
down to 0.5 m m on edge for a \ typi cal " 25,000 m olecular wei ght pro tei n (i n the
crysta l asym metri c uni t) [7]. Secondl y, larger m olecular weight protei ns (i n the
crysta l asym metri c uni t) coul d be studi ed where large crysta ls can be grown (e.g.
3 m m on edge is a \ typi cal" m axi mum [7]). Since the molecular wei ght hi stogram
for e.g. the yeast genome peaks around 30,000 m olecular weight, and many protei ns
m ake ol igomers of sing le subuni ts, a larger m olecular weight capabi l i t y for neutro n
pro tei n crysta llography is vi ta l . ESS can pro vi de thi s. Overa l l ESS can al low then
the detai led structura l dissection of enzym es who se mechanism s need deÙniti on
of key hydro gens (as deuteri um s). Furtherm ore bi ological macro molecul e l igand
intera cti ons involve water di splacement and thi s is an even bigger set of ta rgets
for neutro n structura l study , incl udi ng pro tei ns and nucl eic acids.
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5. Co n cl u d i ng r em ar ks

Given the relati ve ease and wi de avai labi l it y of pro tei n crysta l lography data
col lecti on to day, especial ly using SR X- rays, ensembl es of X- ray structures of a
pro tei n can be obta ined. Neutro n pro tei n structures are rarer to com eby. Ho wever,
the synergy between the SR Laue developm ent and i ts appl icati on, vi a softw are
package tra nsfer, for neutro n protei n data col lecti on and analysis has m eant tha t
stri des have been made in recent years to speed up the del ivery of neutro n resul ts
(f or deta i ls see R efs. [4] and [7]). The e£ cacy of neutro ns as a non-destructi ve
pro be is also im porta nt. Mo reover, the extra mobi l it y of bound wa ters at room
tem perature m akes thei r study vi a X- rays yet m ore chal lenging, since X- rays cause
radi ati on dam ageat such tem peratures, and whi ch further increasesthe uti l i ty and
contri buti on of the neutro n appro ach.

In term s of vari ati ons in protei n structure, between cryo and room tem per-
ature, more studi es of other protei n system s are of course needed to conÙrm the
general i ty of these resul ts.
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