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Motion of kink solitons in the ¢* model in the presence of external spa-
tially inhomogeneous forces is studied. Depending on the system parameters
various routes to chaos, i.e. Feigenbaum’s scenario, type-I intermittency, and
chaos—chaos intermittency are observed. Synchronization of chaotic solitons
is investigated.

PACS numbers: 05.45.Pq, 05.45.Yv

1. Introduction

Recently there has been a growing interest in soliton dynamics in inhomo-
geneous media. Farly papers considered structureless solitons and treated them
as point-like particles interacting with delta-function-like impurities [1, 2] but real
systems involve finite-width inhomogeneity when the spatially extended character
of the soliton has to be taken into account [3-6].

Rich dynamics of such “extended” soliton systems influenced by additional
perturbations occurs in various models. Examples are Josephson junctions [7, 8],
optical systems [9, 10] or plasma models [11]. Furthermore, spatial properties of
solitons and impurities were considered in several papers [4, 12—14] from numerical
and analytical points of view and many unexpected phenomena were observed
(e.g. the soliton explosions [4]). One of the common features of the perturbed
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soliton systems is the transition to chaos [12-16]. The phenomenon usually occurs
in the presence of an external field which pumps energy into the system, influences
internal soliton modes and can finally lead to soliton destruction. The chaotic
behaviour was also observed in cooperative motions of solitons in the lattice formed
by five coupled chains [16]. In [17] we used the time-delay feedback method [18-20]
to suppress the chaotic soliton motion.

In the present paper we investigate transitions to chaos of soliton motion in a
one-dimensional driven damped ¢* model [21] in the presence of a phase boundary.
We show that two such systems can be synchronized by a proper coupling.

Let us consider a model of a one-dimensional classical scalar field ¢(z,t)
governed by the equation of motion

1 1
prx_¢tt_7@t+§ — 5@3:—F($)—G(l‘,t), (1)
where 4 > 0 is a damping constant, the static force F'(x)
F(z) = B(4B* — 1) tanh(Bz) (2)

represents a typical phase boundary centred at the point # = 0 and G(x,1) is a
pumping force. For G(x,t) = 0 there is a static soliton solution of (1) in the form

of the kink

i (z,t) = 2B tanh(Bgz), (3)
which is pinned by the force F'(z) to the site # = 0. The linear stability of this
solution was analyzed in [3] and it was proved that in the limit of zero damping
the kink is stable provided that B > 1/2. We choose the space-time dependent
pumping force G(x,t) in such a way that its spatial part corresponds exactly to the

ground state function of the operator describing small oscillations (linear phonons)
around the kink [22, 23], i.e.

G(x,1) = P cos(wot) cosh™?(B). (4)
Since the force G(x,t) is proportional to the first derivative of the kink shape
¢r(x) thus in the limit of small amplitudes P < 1 it pumps energy mostly into
the translational mode of the kink (3) and it shifts the position of the kink centre
without large disturbances of the kink shape. This effect is limited however only
to the case when the kink is not too far from the site # = 0 because for larger
distances the kink translational mode changes significantly and nonlinear effects
appear.

Chaotic behaviour of such solitons has been previously predicted [3] and also
observed [12-14]. Tt has been proved [13] that in a more general case when the
external force F'(x) can possess three zeros (what is equivalent to a double well
potential V() or to the Duffing model) the chaotic soliton motion is possible. We
will show that the chaos occurs even for a single well potential corresponding to
the force (2) and several routes to chaos can be observed. Although our model is
spatially extended we investigate only the position z.(t) of the soliton centre, i.e.
we consider only one collective mode corresponding to the soliton motion.
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The numerical method used to solve Eq. (1) is a simple finite difference
scheme. To diminish a possible influence of the energy flux which is reflected at
the edge of the grid and can reach the centre of system, the total length of the
implemented numerical grid . = 24 was much larger than the soliton width d = 2.
The grid density was chosen so large (600 points) that no significant changes in the
system dynamics were observed by a further increase in grid density. We found that
for discrete step sizes Az = 0.04, At = 0.032 the results converged. The initial
condition was the solution (3) while boundary conditions defined for # = +12 were

dp _
=0, ()

2. Routes to chaos

The Feigenbaum scenario of the route to chaos was observed when we in-
creased the amplitude P of the force G(x,t) by fixed values of other parameters
B =0.53, v = 0.15, wy = 0.36. Oscillations of the soliton centre z.(?) exhibit a
characteristic sequence of period doublings and are presented in Fig. 1. From the
resulting bifurcation diagram (Fig. 2) we estimated the characteristic Feigenbaum
number § & 4.8+ 0.4.
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Fig. 1. Time series and power spectra for the motion of soliton centre when B = 0.53,
v = 0.15, wo = 0.36, and P = 0.26, 0.32, 0.343, and 0.36, from top to bottom, respec-
tively.
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Fig. 2. Bifurcation diagram for the amplitude of soliton oscillations. Parameter values

as for Fig. 1, T' is the period of the pumping force G.
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Fig. 3. Time series of the soliton centre z.(t) for parameter values B = 0.55, v = 0.05,

wo = 0.7884 and P = 0.265, 0.296, 0.3, from top to bottom, respectively.
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Fig. 4. Power spectra for soliton dynamics. The amplitude P is: 0.265 (a), 0.28 (b),
0.296 (c), 0.3 (d), other parameters as for Fig. 3.
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Fig. 5. Stroboscopic maps for time series for P = 0.265 (a), 0.28 (b), 0.296 (c), 0.3 (d).
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Fig. 6. The square root of the area of the ellipses of Fig. 5 vs. control parameter. The

solid line is drawn for the expected exponent § = 1/2.

Another scenario can be found when B = 0.55, v = 0.05, wy = 0.7884. In
such a case the increase in the parameter P leads to the following path: birth of
the torus via the Hopf bifurcation of the periodic solution, growth of the torus, an
intermittent soliton motion and in the end the full developed chaos. Time series
in Fig. 3 demonstrate the appearance of slow modulations of the amplitude of
the initially nearly sinusoidal oscillations of x.(t) above the bifurcation point P..
The critical bifurcation value was numerically estimated as P, = 0.2826. At the
power spectrum in Fig. 4, the new frequency w; appears as peaks for wg —w; and
wo + wi, where wy/wy ~ 1/11. A further increase in P leads to decrease of the
central hole of the torus (Fig. 5) and to decrease in the modulation frequency wy.
Simultaneously the changes of P amplify the modulation amplitude which can be
observed in Fig. 5. The square root of ellipse surface seen in Fig. 5 and calculated
as a function of the control parameter P is shown in Fig. 6. The result resembles
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Fig. 7. The average length of laminar regimes vs. distance from the critical point.
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Fig. 8. The histogram of the length of regular oscillation near the intermittency thresh-
old.

the so-called square root law that occurs for the secondary Hopf bifurcations [24]

VS~ (P =P, (6)
where 3 = 1/2 and in our model we obtained the exponent 5 = 0.43+0.04. At the
moment when the central hole of the torus vanishes a new phenomenon appears.
The quasiperiodic motion is now aperiodically interrupted by erratic bursts of
large amplitude oscillations (Fig. 3). The behaviour looks similar to the chaotic
intermittency and to specify the intermittency type we investigated the scaling
law for average lengths of laminar regimes (Fig. 7). The obtained exponent v =
—0.45 4+ 0.03 is close to the characteristic value ¥ = —0.5 for the intermittency of

type I [25]. Figure 8 presents the histogram of lengths of laminar phases (regular
oscillations) near the intermittency threshold, which is also characteristic of this
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Fig. 9. The maximal Lyapunov exponent vs. control parameter. Three regimes are

clearly seen: A < 0, A~0, A > 0.
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Fig. 10. Time series for soliton centre of mass (a). System parameters: P = 0.35,
B =10.53, vy =0.15, wop = 0.3. A symmetric trajectory z(¢) — —z(¢) was observed by
other initial conditions; (b) time average of the trajectory (a); (c) averaged trajectory
for P =0.37.

type of intermittency. Finally, this transition to chaos is illustrated in Fig. 9, where
the largest Lyapunov exponent versus the control parameter i1s depicted. Similar
behaviour of spatially dependent systems was observed for Belousov—Zabotynski
chemical reaction [26].

The last observed phenomenon was the chaos—chaos intermittency [27-29].
Below the critical value of the control parameter P the kink performs chaotic
oscillations around a certain position which is located either to the left or to the
right of the system centre = 0 depending on initial conditions. An example



Transitions to Chaos and Chaos Synchronization for Solitons . .. 473

40 -3I.8 ' -3I.6 ' -3I.4 ' -3I.2 ' -3I.o 28
log (P-P)

Fig. 11.  Average time between jumps of the soliton from one chaotic attractor to an-
other.

of such a motion is presented in Fig. 10a. The phenomenon is easier to observe
when the time averaging is applied (Fig. 10b). Tt follows that in the system there
are two distinct chaotic attractors corresponding to the motion of the kink on
the left or on the right side of the phase boundary. If the control parameter P
increases the both attractors merge at the critical point. For higher values of P
the chaos—chaos intermittency appears [30] (Fig. 10c), i.e. the soliton jumps in
a chaotic way between two different parts of the chaotic attractor. The observed
critical exponent 4 describing the scaling of the average time 7 between such jumps
is not universal because it depends on the Lyapunov exponents of the mediated
orbit [29, 31]. In our case it equals to ¥ = 1.1 £ 0.1 (Fig. 11).

3. Chaos synchronization

To observe the synchronization of two chaotic solitons we consider a model of
two coupled one-dimensional systems described by Eq. (1) with indices 1 and 2, re-
spectively. The coupling is unidirectional and is introduced by adding the following
term to the first system:

K@) — 2(1)]
coshz(Ba:(l))

fo@D 1) = , (7)
where J:E;l) is the centre of the first soliton and J:E;z) is the centre of the second one.
Figure 12 shows the averaged distance between both centres as a function of the
amplitude K of the synchronizing force. Let us start with no synchronizing force
(K = 0) and taking as the initial condition the configuration when both solitons
are located on different sides of the phase boundary, i.e. on separated chaotic at-
tractors. When the coupling parameter K gradually increases, the synchronizing
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Fig. 12.  Averaged distance between centres of solitons as a function of the amplitude

K of the synchronising force.
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Fig. 13. The average time needed for a soliton jump from one attractor to another as

a function of the parameter K.

force is at first too weak to shift the soliton (1) to the attractor of the soliton (2),
1.e. to induce a jump of the soliton over the phase boundary. A nonzero probability
of such a jump is only for K > K.o. Figure 13 shows the inverse of this probability,
i.e. the averaged transient time before such a jump takes place. This transient time
decreases very fast with the increase in the parameter K. It 1s important to stress
that there is a region of coupling constants Koo < K < Kgyne when the soliton (1)
can be shifted to the attractor of the soliton (2) and both solitons move chaotically
on the same attractor but they are not synchronized. Only for much higher values
of the coupling parameter K > Kqyne (where Kgyne ~ 10Kc) the synchronization
takes place. The corresponding partial (relative) Lyapunov exponent A, mea-
sured from the observation of the distance between soliton centres x£2>(t) - x@(t)
changes a sign (because it is the transition inside chaos, the largest Lyapunov
exponent of the considered system remains positive) [30]. Figure 14 shows the
averaged behaviour of Ay as a function of the coupling constant. One can see
that there 1s only a limited range of the parameter K when the synchronization is
possible and inside this region a characteristic minimum of the relative Liapunov
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Fig. 14.  Averaged range of the full synchronization.

exponent exists. It is interesting that such behaviour is similar to the phenomenon
observed for chaos control by time-delayed feedback [19, 20, 32]. If the solitons are
synchronized and the coupling constant K is decreased then for K = Ky the
synchronization disappears. But even for K = 0 the both solitons move always
on the same attractor. Only when K is negative and smaller than another critical
constant K1 the repelling force between solitons i1s large enough and there is a
nonzero probability of a jump of the soliton (1) to another attractor (see Fig. 13).
It follows that there is a hysteresis in the system behaviour.

4. Conclusion

We have investigated a highly nonlinear spatially extended system: one-
-dimensional ¢* model [21] in the presence of a phase boundary and a pump-
ing force. Due to the presence of spatially localized solutions in the form of kink
solitons the resulting routes to chaos in this system resemble typical features of
models described by ordinary differential equations or low-dimensional maps, i.e.
the Feigenbaum cascade, intermittency of type I, and chaos—chaos intermittency.
Synchronization of two such chaotic systems is connected with the hysteresis phe-
nomenon.
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