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M otion of kink solitons in t he '
4 model in the presence of extern al spa-

tiall y inhomo geneou s forces is studied . Dep endin g on the system parameters

various routes to chaos, i.e. Feigenbaum ' s scenario, typ e- I intermittency , and
chaos{chaos intermittency are observed. Synchroni zation of chaotic solitons
is investigated.

PACS numb ers: 05.45.Pq, 05.45.Y v

1. I n t rod uct io n

R ecently there has been a growi ng interest in sol i to n dyna m ics in inhom o-
geneous m edia. Earl y papers considered structurel ess sol i to ns and trea ted them
as point- l ike parti cl es intera cti ng wi th del ta- functi on- l ike impuri ti es[1, 2] but real
system s involve Ùnite- wi dth inhomogeneit y when the spati al ly extended character
of the sol i ton has to be ta ken into account [3{ 6].

R ich dyna m ics of such \ extended " sol ito n system s inÛuenced by addi ti onal
perturba ti ons occurs in various models. Exa m ples are Josephson juncti ons [ 7 ; 8 ] ,
opti cal systems [9, 10] or plasma m odels [11]. Furtherm ore, spati al pro perti es of
sol i to ns and im puri ti eswere considered in several papers [4, 1 2 À 14] from num erical
and analyti cal points of vi ew and many unexp ected phenomena were observed
(e.g. the sol i to n expl osions [4]). One of the comm on features of the perturb ed
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sol i to n system s is the tra nsi ti on to chaos [12{ 16]. The phenom enon usual ly occurs
in the presence of an externa l Ùeld whi ch pum ps energy into the system , inÛuences
interna l soli to n m odes and can Ùnal ly lead to sol i to n destructi on. The chaoti c
behavi our wa s also observed in cooperati ve m oti ons of sol i to ns in the latti ce form ed
by Ùvecoupl ed chains [16]. In [17] we used the ti m e-delay f eedback metho d [18{ 20]
to suppress the chaoti c sol ito n m oti on.

In the present paper we investi gate tra nsiti ons to chaos of sol i to n moti on in a
one-dim ensional dri ven dam ped ' 4 m odel [21] in the presence of a phase bounda ry.
W e show tha t tw o such system s can be synchro ni zed by a pro per coupl ing.

Let us consider a model of a one-dim ensional classical scalar Ùeld ' ( x ; t )

governed by the equati on of m oti on

' x x À ' t t À Û' t +
1

2
' À

1

2
' 3 = À F ( x ) À G ( x ; t ) ; (1)

where Û > 0 i s a dampi ng consta nt, the stati c f orce F ( x )

F ( x ) = B ( 4 B 2
À 1 ) ta nh ( B x ) (2)

represents a typi cal phase bounda ry centred at the point x = 0 and G ( x ; t ) i s a
pum ping force. For G (x ; t ) = 0 there is a stati c sol i to n soluti on of (1) in the f orm
of the ki nk

' k ( x ; t ) = 2 B ta nh ( B x ) ; (3)

whi ch is pi nned by the force F ( x ) to the site x = 0 . The l inear stabi l i ty of thi s
soluti on wa s analyzed in [3] and i t was pro ved tha t in the l imi t of zero dampi ng
the ki nk is stable pro vi ded tha t B > 1 =2 . W e choose the space-ti m e dependent
pum ping force G ( x ; t ) in such a way tha t i ts spati al part corresp onds exactl y to the
ground state functi on of the operato r describing smal l oscil lati ons (l inear phonons)
around the ki nk [22, 23], i .e.

G ( x ; t ) = P cos( ! 0 t ) coshÀ 2 ( B x ) : (4)

Since the f orce G ( x ; t ) i s proporti onal to the Ùrst derivati ve of the ki nk shape
' k ( x ) thus in the l im it of smal l am pl itudes P § 1 i t pum ps energy m ostly into
the tra nslati onal m ode of the ki nk (3) and i t shifts the positi on of the ki nk centre
wi tho ut large di sturba nces of the ki nk shape. Thi s e˜ect is lim i ted however onl y
to the case when the ki nk is not to o far from the site x = 0 because for larger
di stances the ki nk tra nslati onal m ode changes signi Ùcantl y and nonl inear e˜ects
app ear.

Cha oti c behavi our of such soli to ns has been previ ously predi cted [3] and also
observed [12{ 14]. It has been pro ved [13] tha t in a m ore general case when the
externa l f orce F ( x ) can possessthree zeros (wha t is equivalent to a doubl e well
potenti al V ( x ) or to the D u£ ng m odel ) the chaoti c sol i ton moti on is possibl e. W e
wi l l show tha t the chaos occurs even for a single wel l potenti al correspondi ng to
the force (2) and several routes to chaos can be observed. Al tho ugh our m odel is
spati al ly extended we investigate onl y the positi on x c ( t ) of the sol i to n centre, i .e.
we consi der only one col lective m ode corresp ondi ng to the sol i to n moti on.
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The num erical m etho d used to solve Eq. (1) is a simpl e Ùnite di ˜erence
scheme. To di minish a possibl e inÛuence of the energy Ûux whi ch is reÛected at
the edge of the grid and can reach the centre of system , the to ta l length of the
im plemented num erical gri d L = 2 4 was much larger tha n the sol i to n wi dth d = 2 .
The gri d density was chosen so large(600 points) tha t no signiÙcant changes in the
system dyna mics were observed by a further increase in gri d density . W ef ound tha t
for di screte step sizes Â x = 0 : 0 4 ; Â t = 0 : 0 3 2 the resul ts converged. The ini ti al
condi ti on was the soluti on (3) whi le bounda ry condi ti ons deÙned for x = Ï 1 2 were

@'

@x
= 0 : (5)

2. R ou t es t o chao s

The Feigenbaum scenario of the route to chaos was observed when we in-
creased the am pl itude P of the force G ( x ; t ) by Ùxed values of other param eters
B = 0 : 5 3 ; Û = 0 : 1 5 ; ! 0 = 0 :3 6 . Osci llati ons of the sol i to n centre x c ( t ) exhi bi t a
characteri sti c sequence of period doubl ings and are presented in Fi g. 1. From the
resul ti ng bi furcati on diagram (Fi g. 2) we estimated the characteri sti c Feigenbaum
num ber £ ¤ 4 : 8 Ï 0 : 4 .

Fig. 1. T ime series and power spectra for the motion of soliton centre when B = 0 :5 3 ;

Û = 0: 15 ; ! 0 : , and P : , 0. 32, 0. 343, and 0.36, from top to bottom, resp ec-

tively .
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Fig. 2. Bif urcation diagram for the amplitu de of soliton oscillati ons. Parameter values

as for Fig. 1, T is the perio d of the pumping force G .

Fig. 3. T ime series of the soliton centre x c ( t ) for parameter values B = 0 : 55 ; Û = 0 :05 ;

! 0 = 0: 788 4 and P : , 0.296, 0.3, from top to bottom, respectively .



T ransi tions to Chaos and C haos Synchroni zation f or Soli tons . . . 469

Fig. 4. Power spectra for soliton dynamics. T he amplitude P is: 0. 265 (a), 0.28 (b),

0. 296 (c), 0. 3 (d), other parameters as for Fig. 3.
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Fig. 5. Strob oscopi c maps for time series for P = 0 : 265 (a), 0.28 (b), 0.296 (c), 0.3 (d).

Fig. 6. The square ro ot of the area of the ellip ses of Fig. 5 vs. control parameter. T he

solid line is draw n for the exp ected exponent Ù = 1= 2.

Ano ther scenari o can be found when B = 0 : 5 5 ; Û = 0 : 0 5 ; ! 0 = 0 : 7 8 8 4 . In
such a case the increase in the parameter P leads to the fol lowing path : bi rth of
the to rus vi a the Ho pf bi furcati on of the periodi c soluti on, growth of the to rus, an
interm i tten t soli to n m oti on and in the end the ful l developed chaos. Ti m e series
in Fi g. 3 demonstra te the appearance of slow modul ati ons of the am pl i tude of
the ini ti al ly nearl y sinusoidal oscil lati ons of x c ( t ) above the bi furca ti on point P c .
The cri ti cal bi furca ti on value was num erically estimated as P c = 0:2826. At the
power spectrum in Fi g. 4, the new f requency ! 1 app ears as peaks for ! 0 À ! 1 and
! 0 + ! 1 , where ! 1 = ! 0 ¿ 1 =1 1 . A f urther increase in P leads to decrease of the
centra l ho le of the to rus (Fi g. 5) and to decrease in the m odul ati on frequency ! 1 .
Simul taneousl y the changes of P ampl ify the m odul ati on am pl itude whi ch can be
observed in Fi g. 5. The square root of ell ipse surf ace seen in Fi g. 5 and calcul ated
as a functi on of the contro l param eter P i s shown in Fi g. 6. The resul t resembl es
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Fig. 7. The average length of laminar regimes vs. distance from the critical point.

Fig. 8. T he histogram of the length of regular oscillati on near the intermittency thresh-

old.

the so-cal led square root law tha t occurs for the secondary Hopf bi furcati ons [24]
p

S ¿ (P À P c ) Ù ; (6)

where Ù = 1 =2 and in our model we obta ined the exp onent Ù = 0 : 4 3 Ï 0 : 0 4 . At the
m oment when the centra l hole of the to rus vanishes a new phenom enon app ears.
The quasiperi odic m oti on is now aperiodical ly interrupted by errati c bursts of
large am pl i tude oscil lati ons (Fi g. 3). The behavi our looks simi lar to the chaoti c
interm i ttency and to specify the interm i ttency typ e we inv estigated the scal ing
law for avera ge lengths of lam inar reg im es (Fi g. 7). The obta ined exp onent Û =

À 0 : 4 5 Ï 0 : 0 3 i s close to the characteri sti c value Û = À 0 : 5 for the interm ittency of
typ e I [25]. Fi gure 8 presents the histogram of lengths of laminar phases(regul ar
oscil lati ons) near the interm i ttency thresho ld, whi ch is also characteri sti c of thi s
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Fig. 9. T he maximal Lyapuno v exponent vs. control parameter. Three regimes are

clearly seen: Ñ < 0 ; Ñ ' 0 ; Ñ > 0 .

Fig. 10. T ime series for soliton centre of mass (a). System parameters: P = 0 :35 ;

B = 0 : 53 ; Û = 0 :15 ; ! : . A symmetric tra j ectory x t x t w as observed by

other initi al condition s; (b) time average of the traj ectory (a); (c) averaged traj ectory

for P : .

typ e of interm ittency . Fi na l ly, thi s tra nsiti on to chaos is il lustra ted in Fi g. 9, where
the largest Lya puno v exponent versus the contro l param eter is depicted. Sim i lar
behavi our of spati a lly dependent system s was observed for Belousov{ Zabotynski
chemical reacti on [26].

The last observed phenom enon was the chaos{ chaos interm ittency [27{ 29].
Below the cri ti cal value of the contro l param eter the ki nk perform s chaoti c
oscil lati ons around a certa in positi on whi ch is located either to the left or to the
ri ght of the system centre depending on ini ti al condi ti ons. An exampl e
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Fig. 11. A verage time betw een j umps of the soliton from one chaotic attractor to an-

other.

of such a moti on is presented in Fi g. 10a. The phenom enon is easier to observe
when the ti m e averaging is appl ied (Fi g. 10b). It fol lows tha t in the system there
are tw o di stinct chaoti c attra cto rs corresp ondi ng to the m oti on of the ki nk on
the left or on the right side of the phase bounda ry. If the contro l parameter P

increases the both attra ctors m erge at the cri ti cal point. For higher values of P

the chaos{ chaos interm ittency app ears [30] (Fi g. 10c), i .e. the sol i to n jum ps in
a chaoti c wa y between two di ˜erent parts of the chaoti c attra cto r. The observed
cri ti cal exponent Û describing the scal ing of the avera ge ti m e§ between such j um ps
is not uni versal because i t depends on the Lya puno v exponents of the m ediated
orbi t [29, 31]. In our case it equals to Û = 1 : 1 Ï 0 : 1 (Fi g. 11).

3 . Ch aos syn ch r on izat io n

T o observe the synchro nizati on of two chaoti c sol i to ns we consider a model of
two coupl ed one-dim ensional system s described by Eq. (1) wi th indi ces1 and 2, re-
spectivel y. The coupl ing is unidi recti onal and is intro duced by addi ng the fol lowi ng
term to the Ùrst system :

f s ( x (1 ) ; t ) =
K [ x

( 2 )
c ( t ) À x

( 1 )
c ( t )]

cosh2
( B x (1 ) )

; (7)

where x
( 1 )
c i s the centre of the Ùrst sol i to n and x

( 2 )
c i s the centre of the second one.

Fi gure 12 shows the avera ged distance between both centres as a functi on of the
am pl i tude K of the synchro ni zing force. Let us start wi th no synchro ni zing force
(K = 0 ) and ta ki ng as the ini ti al condi ti on the conÙgurati on when both sol i tons
are located on di ˜erent sides of the phase boundary , i .e. on separated chaoti c at-
tra ctors. W hen the coupl ing parameter K gradual ly increases, the synchro nizing
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Fig. 12. A veraged distance b etw een centres of solitons as a function of the amplitud e

K of the synchronisin g force.

Fig. 13. T he average time needed for a soliton j ump from one attractor to another as

a function of the parameter K .

force is at Ùrst to o weak to shift the sol i to n (1) to the attra ctor of the sol i to n (2),
i .e. to induce a jum p of the sol i ton over the phase bounda ry. A nonzero probabi l i ty
of such a jum p is onl y for K > K c2 . Fi gure 13 shows the inv erse of thi s pro babi l i ty ,
i .e. the averaged tra nsient ti m e before such a jum p ta kes place. Thi s tra nsient ti m e
decreases very fast wi th the increase in the parameter K . It is im porta nt to stress
tha t there is a region of coupl ing constants K c2 < K < K sy nc when the sol i to n (1)
can be shifted to the attra ctor of the soli to n (2) and both sol i to ns m ove chaoti cal ly
on the same attra ctor but they are not synchro ni zed. Onl y for much hi gher values
of the coupl ing param eter K > K sync (where K sync ¿ 1 0 K c 2) the synchro nizati on
ta kes place. The corresp ondi ng parti al (rel ati ve) Lya puno v exponent Ê r el mea-
sured from the observati on of the distance between sol i to n centres x

( 2 )
c ( t ) À x

( 1 )
c ( t )

changes a sign (because i t is the tra nsiti on inside chaos, the largest Lya puno v
exp onent of the considered system rem ains positi ve) [30]. Fi gure 14 shows the
averaged behavi our of Ê re l as a functi on of the coupl ing consta nt. One can see
tha t there is only a l im ited range of the param eter K when the synchro ni zati on is
possible and inside thi s region a characteri sti c minimum of the relati ve Li apuno v



T ransi tions to Chaos and C haos Synchroni zation f or Soli tons . . . 475

Fig. 14. Averaged range of the full synchronizatio n.

exp onent exists. It is interesti ng tha t such behavi our is sim i lar to the phenomenon
observed for chaos contro l by ti m e-delayed feedback [19, 20, 32]. If the sol ito ns are
synchro nized and the coupl ing constant K is decreased then for K = K sync the
synchro nizati on disappears. But even for K = 0 the both sol i tons m ove always
on the sam e attra cto r. Onl y when K i s negati ve and smal ler tha n another cri ti cal
constant K c1 the repell ing force between sol i to ns is large enough and there is a
nonzero pro babi l it y of a jum p of the soli to n (1) to another attra ctor (see Fi g. 13).
It fol lows tha t there is a hysteresi s in the system behavi our.

4 . Co n clu si on
W e have inv estigated a hi ghly nonl inear spati al ly extended system : one-

-dim ensional ' 4 m odel [21] in the presence of a phase bounda ry and a pum p-
ing force. D ue to the presence of spati ally localized soluti ons in the form of ki nk
sol i to ns the resulti ng routes to chaos in thi s system resemble typi cal f eatures of
m odels described by ordi nary di ˜erenti al equati ons or low-di mensional m aps, i .e.
the Feigenbaum cascade, interm i ttency of typ e I, and chaos{ chaos interm ittency .
Synchro ni zati on of two such chaoti c system s is connected wi th the hysteresi s phe-
nom enon.
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